R. H. A. Becker¹ A. D. Frick¹ F. Burger² J. H. Potgieter² H. Scholtz²

Insulin Glulisine, a New Rapid-Acting Insulin Analogue, Displays a Rapid Time-Action **Profile in Obese Non-Diabetic Subjects**

Abstract

Aims/hypothesis: This study compared the pharmacokinetics and pharmacodynamics of insulin glulisine, insulin lispro, and regular human insulin in obese subjects. Methods: In this single-dose, randomized, double-blind, crossover euglycaemic clamp study, 18 non-diabetic subjects (mean body mass index [BMI] 34.7 kg·m⁻²) were randomized to receive subcutaneous injections of each insulin (0.3 U·kg⁻¹) in pre-determined sequences. Results: Insulin glulisine and insulin lispro had more rapid-acting profiles than regular human insulin. Fractional glucose infusion rate (GIR)-area under curves (AUC) of the GIR curve and maximum GIR were greater for insulin glulisine and insulin lispro versus regular human insulin. Total glucose disposal was slightly greater with insulin glulisine than with regular human insulin, and was comparable to insulin lispro, although it decreased with increasing insulin resistance (HOMA index) with all insulins. Time to 20% (early glucose disposal) and 80% (bulk of activity) of total GIR-AUC were shorter for insulin glulisine and insulin lispro versus regular human insulin. This was corrob-

orated by more rapid and shorter residing pharmacokinetic profiles of insulin glulisine and insulin lispro versus regular human insulin, evidenced by shorter times to 20% of total INS-AUC, INS- C_{max} (INS- t_{max}), and mean residence time. Moreover, time to 20%of total GIR-AUC demonstrated a less rapid-acting profile for insulin lispro versus insulin glulisine, which was consistent with the slightly less rapid pharmacokinetic profile of insulin lispro. There was no significant correlation between BMI or subcutaneous fat thickness and pharmacokinetic or pharmacodynamic profiles for insulin glulisine, unlike insulin lispro and regular human insulin. **Conclusions/interpretation:** Insulin glulisine and insulin lispro demonstrated substantially more rapid time-action profiles than regular human insulin in obese non-diabetic subjects, which prevailed with insulin glulisine irrespective of BMI and subcutaneous fat thickness.

Key words

MRT

Obesity · insulin analogues · pharmacokinetics · pharmacody-

mean residence time

Abbreviations

sc	subcutaneous	GIR	glucose infusion rate
RHI	regular human insulin	BMI	body mass index
MRI	magnetic resonance imaging	RIA	radioimmunoassay
PK	pharmacokinetic	LLOQ	lower limit of quantification
PD	pharmacodynamic	EKG	electrocardiogram

Affiliation

¹ Aventis Pharma Deutschland GmbH, Industriepark Höchst, Frankfurt am Main, Germany ² FARMOVS-PAREXEL, Bloemfontein, Republic of South Africa

Correspondence

R. H. A Becker · Aventis Pharma Deutschland GmbH · Industriepark Höchst · 65926 Frankfurt am Main · Germany · T + 49(0)693054275 · F + 49(0)6930580480 · E-mail: Reinhard.Becker@sanofi-aventis.com

Received: December 15, 2004 · First decision: April 13, 2005 · Accepted: June 13, 2005

Bibliography

Exp Clin Endocrinol Diabetes 2005; 113: 435 – 443 \odot J. A. Barth Verlag in Georg Thieme Verlag KG \cdot Stuttgart · New York ·

DOI 10.1055/s-2005-865806 ·

ISSN 0947-7349

Introduction

Timely prandial (bolus) insulin substitution for the intensified (DCCTRG, 1993; UKPDS, 1998) and convenient treatment of diabetes can be achieved with rapid-acting human insulin analogues (Zinman, 1989). The more rapid onset and shorter duration of action of these insulin analogues, compared with regular human insulin (RHI), have been established predominantly in studies of lean, non-obese subjects (von Mach et al., 2002; ter Braak et al., 1996; Home et al., 1999; Heinemann et al., 1998). However, an increasing majority of patients with Type 2 diabetes are overweight and present with a substantial thickness in subcutaneous (sc) fat layer at the preferred abdominal injection site. Therefore, an investigation into pharmacokinetics and pharmacodynamics in obese subjects became mandatory for any new insulin analogue since rapid bioavailability predominantly is based on both the rate of monomerization of the injected insulin complexes and the rate of absorption. Either step may be significantly altered or even delayed with increasing subcutaneous fat layer to the extent of no discrimination between insulins. In order to fully exploit the advantages of rapid-acting insulin analogues, in combination with basal insulin, as part of various basal and bolus insulin regimens in these patients, the rapid-acting profile of insulin analogues must be maintained irrespective of body weight and abdominal fat.

Insulin glulisine (3B–Lys-29B–Glu-insulin) is a new insulin analogue designed to provide the same total glucodynamic effect as human insulin, but to act over a shorter period of time when given sc (Becker et al., 2003; Frick et al., 2003). Insulin glulisine is like human insulin, except for the replacement of asparagine with lysine at position 3, and of lysine by glutamic acid at position 29 on the B-chain of the human insulin molecule. Insulin glulisine is formulated without additional zinc, unlike other rapid-acting insulin analogues (Kroon, 2003). These minor alterations favour formation of monomers and dimers upon dissolution, which are key to the rapid absorption from sc tissue. Insulin glulisine has already been shown in *in vitro* studies to have low mitogenic potential, with an *in vivo* growth-promoting activity identical to that of RHI (Rakatzi et al., 2003; Hennige et al., 2005).

This study explored the concentration–time and time–action profiles of insulin glulisine in non-diabetic obese subjects, compared with insulin lispro and RHI, using the manual euglycaemic clamp technique; and investigated the corresponding dependence of these profiles on body composition and thickness of the sc fat layer at the injection area. Magnetic resonance imaging (MRI) was employed to estimate sc fat layer as it offers a reliable non-invasive, non-radiological measure of regional and total adipose tissue distribution (Thomas et al., 1998), and compares favourably with other simpler techniques (Hayes et al., 1998).

Material and Methods

Study design

The study followed a single-centre, randomized, double-blind, three-way crossover design, comprising five trial periods (0 [screening], 1, 2, and 3 [treatment], and 4 [follow-up]). Study Period 1 occurred no more than 28 days after Period 0, and Peri-

od 4 occurred no more than 14 days after Period 3. There were washout periods of at least 7 days between the treatment periods. During the treatment periods subjects underwent the eugly-caemic clamp procedure.

Study population

Male and female, obese, otherwise healthy, non-diabetic subjects were enrolled. Subjects were non-smokers, eligible for MRI, tested negative for human insulin antibodies, and were without medical conditions or requirement for regular use of treatment for concomitant diseases likely to interfere with the conduct of the study.

Treatment assignment

Subjects were randomized (1:1:1) to receive single, sc injections of 0.3 U·kg⁻¹ of either insulin glulisine (A; Aventis Pharma, Germany), insulin lispro (B; Eli Lilly, USA), or RHI (C; Aventis Pharma, Germany), in one of three treatment sequences, (ABC, BCA, CAB) into the periumbilical abdomen.

Body weight was determined on the morning of Day 1 of each trial period and was used to calculate the amount of insulin to be administered for a dose of $0.3~\rm U\cdot kg^{-1}$. This insulin dose remained the same for each trial period unless body weight changed by more than 2 kg relative to body weight at the first dose.

Study protocol

At the screening visit, each subject provided written informed consent and the appropriate evaluations and safety checks were performed. On the day before each of the clamp days (study periods 1–3), subjects had a standard carbohydrate-rich supper and then fasted (apart from water or ice chips) from 10.00 PM until the end of the euglycaemic clamp procedure, which lasted up to 10 hours.

Treatment days

For each treatment day, arterialized venous blood samples were taken using a cannula inserted into a forearm dorsal vein to determine blood glucose, serum insulin, and C-peptide levels. A second cannula was inserted in the contralateral forearm for infusion of glucose to establish euglycaemia.

At approximately 08.00 AM on each dosing day, $0.3 \, U \cdot kg^{-1}$ of either insulin glulisine, insulin lispro, or RHI was injected into the periumbilical abdominal sc layer using a standard skin-fold technique. The injection time was defined as time zero, after which blood samples were taken every 5 minutes for 5 hours and then every 10 minutes until the end of the clamp procedure for the measurement of blood glucose. Glucose infusion was to commence when blood glucose fell 10% below baseline value as determined from four measurements at – 60, – 30, – 15, and 0 minutes prior to injection.

Serum insulin and C-peptide levels were determined every 10 minutes until 90 minutes post-administration, every 30 minutes until 180 minutes post-administration, every 60 minutes until 360 minutes post-administration, and then at 2-hour intervals until clamp end. Blood samples for haematological analysis were taken 1 hour before, and 24 hours after, administration of the study insulin.

Blinding procedures

A pharmacist at the study site, who was otherwise not associated with the study, prepared the syringes with the appropriate study medication, witnessed by a second person who also was otherwise not associated with the study. The syringes were labeled with the subject number and the appropriate trial period. The medical doctors or nurses who administered the study insulin and all nurses who adjusted the glucose infusion were also blinded to the study medication.

Pharmacokinetic assessments

The pharmacokinetic (PK) variables analyzed were area under the curve (INS-AUC, trapezoidal method) between time zero and clamp end (INS-AUC $_{0-clamp\ end}$), and the fractional AUC between time zero and 2 hours (INS-AUC_{0-2h}); maximum insulin concentration (INS- C_{max}); time to C_{max} (INS- t_{max}); times to 20% and 80% of INS-AUC (INS-t_{20%-AUC}; INS-t_{80%-AUC}); and mean residence time (INS-MRT).

Pharmacodynamic assessments

A number of pharmacodynamic (PD) variables were analyzed: area under the glucose infusion rate (GIR) time curve between time zero and clamp end (GIR-AUC $_{0-clamp\ end}$); GIR-AUC between time zero and 1 hour (GIR-AUC $_{0-1h}$); and AUC between time zero and 2 hours (GIR-AUC $_{0-2\,h}$). Times to fractions of total GIR-AUC, such as 20% (GIR-t_{20%-AUC}) and 80% (GIR-t_{80%-AUC}) of GIR-AUC₀₋₋ clamp end, were analyzed to assess early glucose disposal and the duration of the bulk of the activity, respectively. In addition, the maximum GIR (GIR_{max}) and time to GIR_{max} (GIR-t_{max}) were calculated from the 3-point running means smoothed GIR.

Anthropometric assessments

Body weight and height measured at screening were used to calculate body mass index (BMI). Skin thickness (abdominal sc fat layer) was measured by sagittal scans at the level of the umbilical injection site by nuclear MRI. A homeostasis model (HOMA) was used to assess insulin resistance (Matthews et al., 1985; Stern et al., 2005).

Study assays

Serum concentrations of insulin glulisine were measured with a radioimmunoassay (RIA) specific for insulin glulisine (lower limit of quantification [LLOQ] 2.0 μU·mL⁻¹). Serum concentrations of RHI and insulin lispro were determined with an insulin RIA (LLOQ 4.3 μU·mL⁻¹, for both insulins). Serum concentrations of C-peptide were also measured using an RIA (LLOQ 0.07 nmol·L⁻¹). Corrections for endogenous insulin after administration of insulin lispro or RHI were performed according to the equation:

 $Insulin_{EXOG} = Insulin_{OBS} - (F \cdot C\text{-peptide}_{OBS})$

Insulin_{EXOG} = absolute value for the exogenous serum insulin concentration; Insulin_{OBS} = each value of immunoreactive serum insulin measurements; F = mean serum insulin/serum C-peptide concentration at -90, -30, and 0 minutes.

Safety assessments

Adverse events, noted as reported by the subjects, or upon examination by investigator, were any unfavourable and unintended signs, symptoms, syndromes, or illnesses that developed or worsened during the period of observation. Subjects were examined for changes in clinical chemistry, haematology, body temperature, physical condition, blood pressure, radial pulse rate, standard 12-lead electrocardiogram (EKG) readings, lung function, and injection-site reactions.

Statistics

Standard statistical equivalence inferences (analysis of variance [ANOVA] on In-transformed INS-AUCs, INS-C_{max}, or un-transformed GIR-AUCs, GIR_{max}, MRT, or non-parametric techniques for INS-t_{max}, GIR-t_{max}, INS-t_{20%-AUC}, INS-t_{80%-AUC}, GIR-t_{20%-AUC}, and GIR- $t_{80\%-AUC}$) on 80-125% confidence ranges were applied with calculation of 95% confidence intervals (CIs) of pair-wise ratios of mean treatment responses for the various PD and PK parameters. Based on previous experience with insulin glulisine, an estimated total sample size of 18 subjects would provide 80% power to demonstrate equivalence for early insulin exposure and glucodynamic responses, INS-AUC_{0-2h}, INS-C_{max}, or GIR_{max}.

Results

Subjects

Ten male (M) and eight female (F) obese, but otherwise healthy, subjects without diabetes, were enrolled and completed the study according to the protocol. Subjects were non-smokers, eligible for magnetic resonance imaging (MRI), tested negative for human insulin antibodies, and were without medical conditions or the requirement for regular use of treatment for concomitant diseases likely to interfere with the conduct of the study.

There were no major protocol deviations. Minor protocol deviations occurred concerning the deviation from scheduled bloodsampling times, but none were considered to affect the validity of the study results. Nine subjects (4 F/5 M) were allocated to each BMI group (Group I: 30.0-34.9 kg·m⁻²; Group II: 35.0-40.0 kg⋅m⁻²). Further details are given in Table 1.

Performance of the clamp

The mean baseline blood glucose concentrations, calculated from the four glucose values before study drug administration, were similar for all clamp days (insulin glulisine: 87 mg·dL⁻¹ [range 76 – 99 mg·dL⁻¹], insulin lispro: 86 mg·dL⁻¹ [range 77 – $95 \text{ mg} \cdot dL^{-1}$], RHI: $86 \text{ mg} \cdot dL^{-1}$ [range $73 - 96 \text{ mg} \cdot dL^{-1}$]).

Glucose infusion had to be started on average 25 min (range 15 – 50 min) after injection of insulin glulisine, 35/40 min (range 20 – 55 min) after insulin lispro, and 45 min (range 25 – 215 min) after RHI. Glucose levels were clamped on average 11.0 (midrange 4.8; 17.3) mg·dL⁻¹ above baseline after insulin glulisine and insulin lispro and slightly lower at 4.7 (midrange - 0.9; 11.8) mg·dL⁻¹ after RHI from 90 – 390 min, the effective clamp end. Apart from a slightly earlier drop in glucose concentration after insulin glulisine (nadir 30 min vs. 40 min after insulin lispro), individual differences in changes in glucose concentrations from baseline were the same for insulins glulisine and lispro over the course of the clamp.

Table 1 Demographic data

Parameter	Age (years)	Body weight (kg)	BMI (kg·m ⁻²)	Skin thick- ness (mm)	FPG (mg·dL ⁻¹)	f-Insulin (μU·mL ⁻¹)	HOMA-Index	IR
Mean (range)	29 (19; 47)	107 (84; 140)	34.7 (30; 40)	36.9 (18; 59)	86.1 (77; 94)	20.7 (8; 41)	4.4 (1.9; 9.6)	11 of 18
Group I/II (mean)	28; 31	97; 117	32; 37	30; 44	85; 87	17; 24	3.6; 5.2	4 of 9; 7 of 9

BMI (body mass index $[kg \cdot m^{-2}]$) = body weight divided by height²; skin thickness (mm) = subcutaneous fat layer (measured by MRI); FPG (fasting plasma glucose; $mg \cdot dL^{-1}$); f-Insulin (fasting serum insulin concentration; $\mu U \cdot mL^{-1}$); IR = insulin resistant (HOMA-Index > 4.65 or HOMA-IR > 3.6 and BMI > 27.5 kg · m⁻²); HOMA-Index (homeostasis model assessment = f-Insulin $[\mu U \cdot mL^{-1}]$ multiplied by FPG $[mmol \cdot L^{-1}]$ divided by 22.5 $[L^2 \cdot \mu U^{-1} \cdot mol^{-1}]$)

Table 2 Pharmacodynamic results

Pharmacodynamic variable	Insulin glulisine Arithn	Insulin lispro netic mean (n :	Regular human insulin = 18)	Insulin glulisine/ insulin lispro F	Insulin glulisine/ regular human insulin Point estimate (95% CI)*	Insulin lispro/regular human insulin
GIR-AUC _{0-1h} (mg·kg ⁻¹)	101	60	29	1.70 (1.2; 2.7)	3.53 (2.1; 9.9)	2.08 (1.3; 4.4)
GIR - AUC_{0-2h} ($mg \cdot kg^{-1}$)	427	354	197	1.21 (1.0; 1.5)	2.17 (1.8; 2.7)	1.80 (1.4; 2.4)
$GIR-AUC_{0-clamp\ end}\ (mg\cdot kg^{-1})$	1700	1625	1448	1.05 (1.0; 1.2)	1.17 (1.1; 1.3)	1.12 (1.0; 1.3)
GIR_{max}^{\dagger} (mg·min ⁻¹ ·kg ⁻¹)	6	6	5	1.02 (0.9; 1.1)	1.30 (1.2; 1.4)	1.27 (1.1; 1.4)
	N	1edian (n = 18)	F	Point estimate (95% CI)‡	
GIR-t _{max} (min)	100	138	233	-8 (-43; 28)	- 81 (- 123; - 26)	- 65 (- 107; - 33)

^{*} Point estimates and 95% confidence interval (CI) for the ratio of treatment means, according to Fieller's Theorem, based on untransformed data; † determined from "smoothed" glucose infusion rate (GIR) profiles. ‡ Point estimates and 95% CI for the median of differences from non-parametric data analysis

The mean maximum suppression of serum C-peptide relative to baseline was similar at 56% (range 33-78%) after administration of RHI, and 47% after administration of insulin lispro (range 31-64%). However, it was slightly larger at 54% (range 33-78%) with RHI, compared with 40% with insulin lispro (range 0-62%), at the end of the clamp period. It was not necessary to determine C-peptide levels for insulin glulisine because of the specific nature of the assay used.

Pharmacodynamics

Insulin glulisine and insulin lispro both had more rapid-acting profiles than RHI as assessed by greater fractional GIR-AUCs (p < 0.05 at 2 hours for insulin glulisine or insulin lispro vs. RHI) and GIR_{max}. Also, the time to 80% of GIR-AUC $_{0-\text{clamp end}}$, GIR-t_{80%-AUC}, representing duration of the bulk of action, was shorter and similar for both insulin glulisine and insulin lispro compared with RHI (Table **2**, Fig. **1A** and **C**). Insulin lispro displayed nearly equivalent total glucose disposal (GIR-AUC $_{0-\text{clamp end}}$) to insulin glulisine, which was slightly less with RHI (p < 0.05 vs. insulin glulisine).

Moreover, insulin lispro had a somewhat delayed action profile compared with insulin glulisine, as displayed by smaller fractional GIR-AUCs and longer time to 20% of GIR-AUC $_{0-\text{clamp end}}$, GIR-t $_{20\%-AUC}$ (p = 0.025 at 2 hours), suggesting a less intense onset of activity for insulin lispro compared with insulin glulisine.

While overall glucose disposal was not significantly dependent on skin thickness or BMI, in this obese population there was a significant, negative correlation for GIR-AUC $_{0-1\,h}$, GIR-AUC $_{0-2\,h}$, GIR-AUC $_{0-clamp\ end}$, and GIR $_{max}$ with all insulins to insulin resistance according to HOMA index classification (Pearson correlation coefficients range from $-0.50\ [95\%\ CI\ -0.78;\ -0.22]$ to $-0.74\ [95\%\ CI\ -0.88;\ -0.60]$). However, the positive correlation for insulin lispro and RHI between skin thickness or BMI and GIR-t $_{max}$, indicating some shift in the action profiles with increasing skin thickness (sc fat layer) was not seen with insulin glulisine (Table **3**).

Pharmacokinetics

The predominant focus of this analysis was qualitative aspects of the PK profiles. The total exposure (INS-AUC_{0-clamp end}) was similar for insulin lispro and RHI, and was larger after insulin glulisine administration (Table **4**, Fig. **1B** and **D**), reflecting quantitative limitations when comparing results obtained with different RIAs.

Nevertheless, insulin glulisine and insulin lispro had more rapid and shorter residing PK profiles than RHI as evidenced by shorter times to 20% of INS-AUC $_{0-\text{clamp}}$ end (INS- $t_{20\%-AUC}$), to INS- C_{max} (INS- t_{max}), and shorter MRT (at higher fractional INS-AUCs and INS- C_{max}) as would be expected for any rapid-acting insulin compared with RHI. Reflecting the PD profile, the PK profile of insulin lispro was less rapid than that of insulin glulisine, as demonstrated by longer INS- $t_{20\%-AUC}$, INS- t_{max} , and more extended MRT (Table **5**).

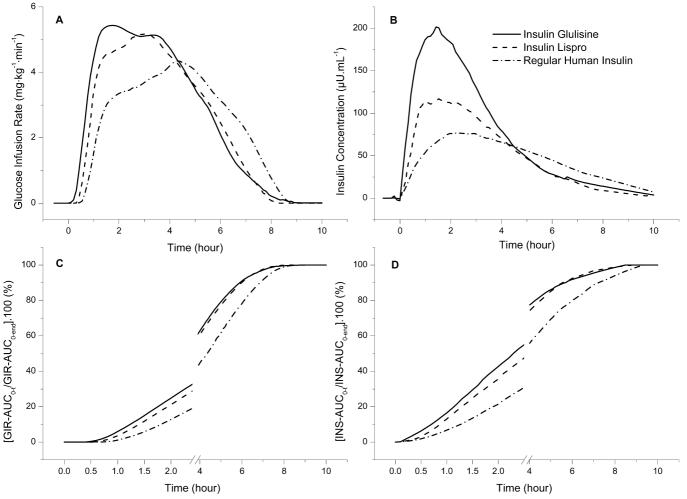


Fig. 1 A to D Pharmacodynamic and pharmacokinetic profiles following subcutaneous injection of 0.3 U·kg⁻¹ of insulin glulisine, insulin lispro, or regular human insulin in the abdominal area. Panel A Average

glucose infusion rates (mg·kg⁻¹·min⁻¹); Panel **B** Average insulin concentrations ($\mu U \cdot m L^{-1}$); Panel **C** Cumulative glucose disposal (%), and Panel **D** Cumulative exogenous insulin exposure (%).

Table 3 Correlation of skin thickness and body mass index with time to maximum activity

		Insulin glulisine		Insulin lispro		Regular hui	man insulin
Parameter	Anthropometric measure	Pearson*	95% CI [†]	Pearson*	95% CI [†]	Pearson*	95% CI [†]
t _{max} (min)	body mass index (kg·m ⁻²)	0.13	- 0.33, 0.59	0.42	0.02, 0.82	0.46	0.08, 0.84
	skin thickness [‡] (mm)	0.29	- 0.14, 0.71	0.67	0.46, 0.87	0.61	0.39, 0.83

^{*} Pearson's correlation coefficient; †95% confidence interval (CI). ‡ Arithmetic mean of the three periumbilical MRI measures at 0°, 45°, and 180°

The point estimates and confidence intervals demonstrate the treatment differences in the rapid-acting properties of the three insulins, particularly the between-treatment differences in INS $t_{20\%-AUC}$ and INS- $t_{80\%-AUC}$ (Fig. 2). INS-AUC_{0-2h}, INS-AUC_{0-clamp end}, and INS- C_{max} were not significantly (p > 0.05; data not shown) correlated to insulin resistance classified by HOMA.

Safety

Adverse events

No serious adverse events were reported during the study. None of the 28 adverse events reported (10 subjects) were considered related to the study medication, and all adverse events ceased

without sequelae. Headache (a common side effect of clamp studies) was the most frequently reported adverse event and was equally distributed between treatment groups (seven, five, and six for insulin glulisine, insulin lispro, and RHI, respectively). This was followed by mild to moderate nausea (one subject each for insulin glulisine and RHI), and moderate nausea and vomiting (one subject for insulin lispro).

Other safety assessments

Observed decreases in haemoglobin concentration, haematocrit, erythrocyte count and platelets were deemed to be clinically irrelevant as they were attributed to the significant blood loss dur-

Table 4 Pharmacokinetic results

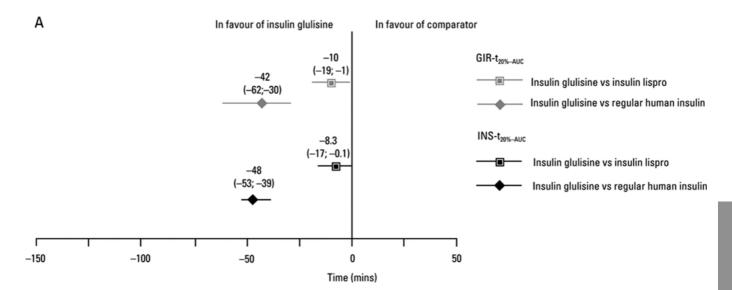
	Insulin glulisine	Insulin lispro	Regular human insulin	Insulin glulisine/ insulin lispro	Insulin glulisine/ regular human insulin	Insulin lispro/regular human insulin
Pharmacokinetic variable	Geor	netric mean (n =	= 18)	ı	Point estimate (95% CI)*	
INS-AUC _{0-2h} (μ IU·min ⁻¹ ·mL ⁻¹)	18439	10940	5509	1.69 (1.4, 2.0)	3.35 (2.9, 3.9)	1.99 (1.7, 2.3)
INS-AUC _{0 - clamp end} (μ IU · min ⁻¹ · mL ⁻¹)	43319	30011	26132	1.44 (1.3, 1.6)	1.66 (1.5, 1.8)	1.15 (1.1, 1.2)
INS- C_{max} ($\mu IU \cdot mL^{-1}$)	203	133	77	1.53 (1.3, 1.8)	2.65 (2.3, 3.0)	1.73 (1.5, 2.0)
MRT (min)	149	166	229	0.90 (0.8, 1.0)	0.65 (0.6, 0.7)	0.72 (0.7, 0.8)
		Median (n = 1	8)	F	Point estimate (95% CI)†	
INS-t _{max} (min)	76	99	144	– 10 (– 20, 1) [†]	– 65 (– 79, – 53) [†]	– 55 (– 71, – 40) [†]

^{*} Point estimates and 95% confidence interval (CI) for the ratio of treatment means, based on In-transformed data. † Point estimates and 95% CI for the median of differences from non-parametric data analysis

Table 5 Correlation of insulin resistance with glucose disposal

	Insulin glulisine		Insulin l	ispro	Regular human insulin	
Parameter	Pearson*	95% CI†	Pearson*	95% CI†	Pearson*	95% CI†
$GIR-AUC_{0-1h}$ ($mg \cdot kg^{-1}$)	- 0.64	- 0.89; - 0.40	- 0.51	- 0.76, - 0.26	- 0.50	- 0.78; - 0.22
GIR - AUC_{0-2h} ($mg \cdot kg^{-1}$)	- 0.68	- 0.89; - 0.47	- 0.62	- 0.79, - 0.44	- 0.67	- 0.84; - 0.49
$GIR-AUC_{0-end}$ ($mg \cdot kg^{-1}$)	- 0.62	- 0.77; - 0.48	- 0.52	- 0.68, - 0.36	- 0.74	- 0.88; - 0.60
GIR_{max} ($mg \cdot kg^{-1} \cdot min^{-1}$)	- 0.65	- 0.87; - 0.43	- 0.60	- 0.78, - 0.41	- 0.73	- 0.89; - 0.56

^{*} Pearson's correlation coefficient; † 95% confidence interval (CI)


ing the study. None of the observed changes in platelets, fasting blood glucose, total protein and EKGs were considered to be clinically relevant.

Discussion

The results of this study demonstrate that insulin glulisine has a rapid and short time-action profile in obese, non-diabetic subjects, as has insulin lispro. All fractional GIR-AUCs, as well as GIR_{max}, were greater, and GIR-t_{max} occurred earlier with insulin glulisine and insulin lispro, than with RHI. Notwithstanding that GIR-AUC $_{0-1h}$, GIR-AUC $_{0-2h}$, GIR-AUC $_{0-clamp\ end}$, and GIR $_{max}$ of all insulins decreased with increasing insulin resistance, insulin glulisine provided slightly greater total glucose disposal (based on GIR-AUC_{0 - clamp end}) than RHI, while it was not significantly less after insulin lispro. Also, GIR-t_{20%-AUC} (reflecting early glucose disposal) and the GIR-t $_{\rm 80\%-AUC}$ (reflecting the duration of the bulk of activity), were shorter for both insulin analogues, confirming that about the same glucose disposal as with RHI was achieved in less time. Overall however, insulin lispro displayed a less rapid-acting profile than insulin glulisine in this obese population, as evidenced by significantly smaller GIR-AUC_{0-1h} and GIR- AUC_{0-2h} , and a longer GIR- $t_{20\%-AUC}$. The difference in the time-action profiles of the two analogues was observed within the 2 hours post-administration, when insulin glulisine maintained its rapid action. This is an important period, particularly in Type 2 diabetes, in light of proposals that early postprandial hyperglycaemia may be an important epidemiological predictor of cardiovascular mortality (Pfeifer et al, 1981; DECODE study Group, 2001).

The rapid glucodynamic effects of both insulin glulisine and insulin lispro are corroborated by the more rapid and shorter residing PK profiles as compared to RHI. This is demonstrated by earlier INS- $t_{\text{max}}\text{,}$ shorter times to 20% and 80% of total INS-AUC, shorter MRT at higher fractional INS-AUCs as well as higher INS-C_{max}, which is in line with the rapid PK profile in non-obese healthy volunteers (Becker et al., 2003; Frick et al., 2003). Moreover, even with the quantitative limitations incurred by the use of different RIAs (an assay specific for insulin glulisine and an assay for human insulin as well as for insulin lispro), insulin lispro displayed significantly less early exposure than insulin glulisine. This difference in assays has, however, already been accounted for in large part, by standardization of the PK curves. While it is acknowledged that different assays employed for evaluation of serum insulin levels may still impact on the PK data quantitatively, this in no way impacts on the qualitative results.

It is important to concede that human error introduced into the glucodynamic results by the use of a manual clamp, rather than using the Biostator technique, may have resulted in variability early in the clamp, that could have contributed to the GIR differences observed between the treatments. These misgivings are tenuous as both techniques have been shown to give effective glucose clamping; moreover, the manual method does not re-

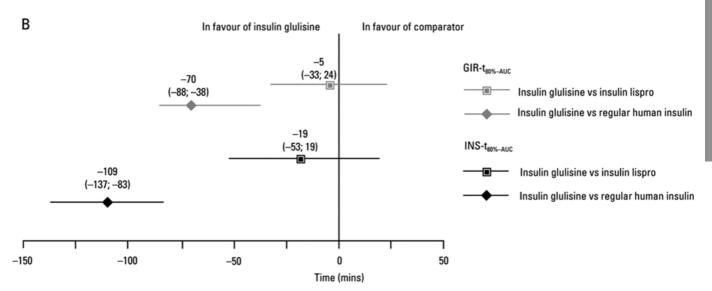


Fig. **2A** and **B** Point estimates and 95% CI for GIR-t_{20%-AUC} and INSt_{20%-AUC} for insulin glulisine versus insulin lispro and regular human in-

sulin (A) and GIR- $t_{80\%-AUC}$ and INS- $t_{80\%-AUC}$ for insulin glulisine versus insulin lispro and regular human insulin (B).

quire complex machines and has also been demonstrated to show less variability in the GIR compared with the Biostator (Ponchner et al., 1984). In spite of this, the more rapid drop in glucose concentrations and the correspondingly earlier start of glucose infusion provide evidence for a genuine more rapid absorption and action of insulin glulisine (Heise et al., 2005, preliminary data1). In addition, the time concentration profiles, which are independent of clamp variability, corroborate the glucodynamic data.

Finally, since the investigators adjusting the clamp were blinded to the study medication being administered, they would have no pre-formed treatment expectations. Consequently, there is no justification to suggest over- or under-compensation of the manual clamp in a treatment-specific manner that could explain the between-treatment differences in PD profiles.

The reasons for the differentiation in absorption between insulin glulisine and insulin lispro require additional explorations. It is known from insulin lispro that added zinc in the commercialized formulation promotes self-association into stabilized hexamers (Bakaysa et al, 1996) and ensures practical shelf life, but also causes some delay in absorption and action as compared to ma-

¹ Preliminary data by Heise et al. (2005) employing a BIOSTATOR supported clamp technique are affirmative.

terial without added zinc used in developmental studies (Howey et al., 1994). Although the action profiles of insulin lispro and insulin glulisine, which is formulated without added zinc, are superimposable in lean subjects (Becker et al., 2003), suggesting total equivalence in dynamics of bioavailability (i.e. dissociation into monomers and absorption), either step may be differentially influenced with increasing sc fat layer. Whether absence of added zinc in the insulin glulisine formulation is the pivotal clue to the differentiation in absorption in obese subjects remains speculative.

While additional *in vitro* and clinical investigations into this phenomenon may be warranted, there may already be practical clinical implications. The lack of a significant effect of sc adiposity on the absorption rate of insulin glulisine could add to more reliable and, therefore, superior prandial glycaemic control when injected immediately prior to, or soon after, meals in obese patients, who represent the vast majority of patients with Type 2 diabetes.

With regards to consistency of activity in obese subjects, both insulin lispro and RHI displayed some dependence of absorption and action on thickness of the sc fat layer, as evidenced by a significant shift in time to maximum activity. The lack of a relevant correlation between anthropometric parameters within the BMI range studied, and PK or PD profiles for insulin glulisine, demonstrates that this analogue consistently maintains its rapid-acting properties, irrespective of increased thickness in the sc fat layer that is associated with obesity.

Adipose tissue accumulates in two main sites, sc and intra-abdominal, manifesting during puberty (Slyper, 1998). While increased visceral fat is a feature of Type 2 diabetes, and resistance to insulin action with compensatory hyperinsulinaemia are the hallmarks of obesity, it is the sc fat layer that predominantly correlates with a delay in absorption and, hence, onset of activity of RHI (Vora et al., 1993). Published studies support this concept that visceral fat determines the overall glucose disposal efficacy, while the sc fat layer determines absorption characteristics. Glucose disappearance rate has been negatively correlated with visceral fat, but not with sc fat in 21 Type 2 patients (Gautier et al., 1998), while sc fat layer thickness has been negatively correlated with human insulin concentrations, regardless of the concentration of injected RHI, in 50 healthy subjects (Sindelka et al., 1994). In a comparison of the absorption of radiolabelled human insulin in 10 obese and 10 non-obese Type 2 patients, overall slower absorption was reported in patients with Type 2 diabetes compared with previously published data from patients with Type 1 diabetes; this, however, was not differentiated by BMI or fat layer depth (Clauson and Linde, 1995).

As observed in the present study, this is different with rapid-acting insulin analogues, and with insulin glulisine in particular, where there is no significant shift in the PK and glucodynamic profiles within the BMI range studied and compatible with non-obese healthy subjects (Becker et al., 2003). However, attenuation of total glucose disposal remains a feature of insulin resistance associated with obesity and regardless of the insulin employed.

In conclusion, insulin glulisine and insulin lispro both have a more rapid time–action profile than RHI in obese non-diabetic subjects. In addition, insulin glulisine has a more consistent rapid-acting profile across a range of BMI and skin thickness, while insulin lispro appears to be less rapid-acting with increasing BMI and skin thickness. To fully understand the clinical ramifications of these findings, trials that compare the glucose-lowering efficacy of insulin glulisine to that of RHI and insulin lispro in obese patients with Type 2 diabetes will need to be undertaken.

Acknowledgements

This study was supported by Aventis Pharmaceuticals. Dr. Annke Frick and Dr. Reinhard Becker are employees of Aventis Pharmaceuticals. These data were presented at the 2004 American Diabetes Association meeting in abstract form (Frick A, et al., Diabetes 2004; 53 [Suppl 2]: Abstract 526), but have not been published elsewhere.

References

- ¹ Bakaysa DL, Radziuk J, Havel HA, Brader ML, Li S, Dodd SW, Beals JM, Pekar AH, Brems DN. Physicochemical basis for the rapid time-action of Lys B28 ProB29-insulin: Dissociation of a protein ligand complex. Protein Science 1996; 5: 2521 2531
- ² Becker R, Frick A, Wessels D, Scholtz H. Evaluation of the pharmacodynamic and pharmacokinetic profiles of insulin glulisine a novel, rapid-acting, human insulin analogue. Diabetologia 2003; 46: A775 (Abstract)
- ³ Clauson PG, Linde B. Absorption of rapid-acting insulin in obese and nonobese NIDDM patients. Diabetes Care 1995; 18: 986 991
- ⁴ DECODE Study Group, the European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med 2001; 161: 397 – 405
- ⁵ Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329 (14): 977 – 986
- ⁶ Frick A, Becker R, Wessels D, Scholtz H. Pharmacokinetic and glucodynamic profiles of insulin glulisine: an evaluation following subcutaneous administration at various injection sites. Diabetologia 2003; 46: A776 (Abstract)
- ⁷ Gautier JF, Mourier A, de Kerviler E, Tarentola A, Bigard AX, Villette JM, Guezennec CY, Cathelineau G. Evaluation of abdominal fat distribution in noninsulin-dependent diabetes mellitus: relationship to insulin resistance. J Clin Endocrinol Metab 1998; 83: 1306 1311
- ⁸ Hayes PA, Sowood PJ, Belyavin A, Cohen JB, Smith FW. Sub-cutaneous fat thickness measured by magnetic resonance imaging, ultrasound, and calipers. Med Sci Sports Exerc 1998; 20: 303 – 309
- ⁹ Heinemann L, Weyer C, Rauhaus M, Heinrichs S, Heise T. Variability of the metabolic effect of soluble insulin and the rapid-acting insulin analogue insulin aspart. Diabetes Care 1998; 21: 1910 – 1914
- Heise T, Nosek L, Spitzer H, Heinemann L. Glulisine. Schnellerer Wirkbeginn als Lispro bei schlanken bis stark übergewichtigen Patienten. Diabetes und Stoffwechsel 2005; 14: P-20
- Hennige AM, Lehmann R, Weigert C, Moeschel K, Schäuble M, Metzinger E, Lammers R, Häring HU. Insulin Receptor Signaling Characteristics In Vivo. Diabetes 2005; 54: 361 366
- Home PD, Barriocanal L, Lindholm A. Comparative pharmacokinetics and pharmacodynamics of the novel rapid-acting insulin analogue, insulin aspart, in healthy volunteers. Eur J Clin Pharmacol 1999; 55: 199 – 203
- Howey DC, Bowsher RR, Brunelle RL, Woodworth JR. [Lys(B28), Pro (B29)]-Human insulin. A rapidly absorbed analogue of human insulin. Diabetes 1994; 43: 396 402

- ¹⁴ Kroon K. Chapter 13: Insulin pharmacology, types of regimens and adjustments. (2003) www.endotext.com. Accessed October 26, 2003
- 15 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412 419
- ¹⁶ Pfeifer MA, Halter JB, Porte D Jr. Insulin secretion in diabetes mellitus. Am J Med 1981; 70: 579 – 588
- ¹⁷ Ponchner M, Heine RJ, Pernet A, Hanning I, Francis AJ, Cook D, Orskov H, Alberti KG. A comparison of the artificial pancreas (glucose controlled insulin infusion system) and a manual technique for assessing insulin sensitivity during euglycaemic clamping. Diabetologia 1984; 26: 420–425
- ¹⁸ Rakatzi I, Ramrath S, Ledwig D, Dransfeld O, Bartels T, Seipke G, Eckel J. A novel insulin analogue with unique properties: LysB3, GluB29 insulin induces prominent activation of insulin receptor substrate 2, but marginal phosphorylation of insulin receptor substrate 1. Diabetes 2003; 52: 2227 2238
- ¹⁹ Sindelka G, Heinemann L, Berger M, Frenck W, Chantelau E. Effect of insulin concentration, subcutaneous fat thickness and skin temperature on subcutaneous insulin absorption in healthy subjects. Diabetologia 1994; 37: 377 – 380
- ²⁰ Slyper AH. Childhood obesity, adipose tissue distribution, and the pediatric practitioner. Pediatrics 1998; 102: e4

- ²¹ Stern SE, Williams K, Ferrannini E, DeFronzo RA, Bogardus C, Stern MP. Identification of individuals with insulin resistance using routine clinical measurements. Diabetes 2005; 54: 333 339
- ²² ter Braak EW, Woodworth JR, Bianchi R, Cerimele B, Erkelens DW, Thijssen JH, Kurtz D. Injection site effects on the pharmacokinetics and glucodynamics of insulin lispro and regular insulin. Diabetes Care 1996; 19: 1437 1440
- ²³ Thomas EL, Saeed N, Hajnal JV, Brynes A, Goldstone AP, Frost G, Bell JD. Magnetic resonance imaging of total body fat. J Appl Physiol 1998; 85: 1778 – 1785
- ²⁴ UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837 853
- ²⁵ Vora JP, Burch A, Peters JR, Owens DR. Absorption of radiolabelled soluble insulin in Type 1 (insulin-dependent) diabetes: influence of subcutaneous blood flow and anthropometry. Diabet Med 1993; 10: 736-743
- ²⁶ von Mach MA, Brinkmann C, Hansen T, Weilemann LS, Beyer J. Differences in pharmacokinetics and pharmacodynamics of insulin lispro and aspart in healthy volunteers. Exp Clin Endocrinol Diabetes 2002; 110: 416 419
- ²⁷ Zinman B. The physiological replacement of insulin: an elusive goal. N Engl J Med 1989; 321: 363 – 370

original article

Comparative pharmacodynamic and pharmacokinetic characteristics of subcutaneous insulin glulisine and insulin aspart prior to a standard meal in obese subjects with type 2 diabetes

G. B. Bolli¹, S. Luzio², S. Marzotti¹, F. Porcellati¹, C. Sert-Langeron³, B. Charbonnel⁴, Y. Zair⁴

Aims: A multinational, randomized, double-blind, two-way crossover trial to compare the pharmacokinetic and pharmacodynamic properties of bolus, subcutaneously administered insulin glulisine (glulisine) and insulin aspart (aspart) in insulin-naïve, obese subjects with type 2 diabetes. **Methods:** Thirty subjects [9/21 females/males; mean \pm SD age: 60.7 ± 7.7 years; body mass index (BMI): 33.5 ± 3.3 kg/m²; duration of diabetes: 6.8 ± 4.6 years; HbA1c: 7.1 ± 0.8 %] were included in the analysis. They fasted overnight and then received a 0.2 U/kg subcutaneous dose of glulisine or aspart 2 min before starting a standardized test meal, 7 days apart, according to a randomization schedule. Blood samples were taken every 15 min, starting 20 min before the meal and ending 6 h postprandially.

Results: The area under the absolute glucose concentration–time curve between 0 and 1 h after insulin injection and maximal glucose concentration was significantly lower with glulisine than with aspart (p = 0.0455 and 0.0337, respectively). However, for the total study period, plasma glucose concentration was similar for glulisine and aspart. Peak insulin concentration was significantly higher for glulisine than for insulin aspart (p < 0.0001). Hypoglycaemic events (≤ 70 mg/dl with or without symptoms) occurred in 13 and 16 subjects treated with glulisine and aspart, respectively, but there were no cases of severe hypoglycaemia requiring intervention.

Conclusions: Glulisine was associated with lower glucose levels during the first hour after a standard meal; the remaining glucose profiles were otherwise equivalent, with higher insulin levels observed throughout the study period.

Keywords: insulin analogues, insulin aspart, insulin glulisine, insulin therapy, obesity, obesity therapy, pharmacodynamics, pharmacokinetics, type 2 diabetes

Date submitted 3 August 2010; date of first decision 15 September 2010; date of final acceptance 17 November 2010

Introduction

The ultimate goal of therapy in type 2 diabetes (T2DM) is to achieve near-normoglycaemia [1]. The Global Task Force on Glycaemic Control recommended HbA1c levels of less than 6.5% as a good target for certain people with T2DM [2], although it also stated that HbA1c and blood glucose targets should be individualized, taking into account factors such as age, existing complications, risk of future complications, diabetes duration and risk of hypoglycaemia. Type 2 diabetes is generally characterized by the presence of relative insulin deficiency, including postprandial insulin deficiency [3], in the presence of insulin resistance. Therefore, an important facet of

T2DM treatment is to support and/or supplement the insulin deficit to replicate as closely as possible the normal insulin secretory pattern, including an early response to a nutrient challenge. The time—action profile of subcutaneously injected regular human insulin (RHI) provides a slow onset of action, with a peak effect at 3 h after dosing and a relatively prolonged duration of action beyond 8 h [4]. This requires the insulin to be administered up to 1 h premeal in an attempt to accommodate these deficiencies.

In response to these limitations of RHI, three rapid-acting insulin analogues have been introduced: insulin aspart (aspart), insulin glulisine (glulisine) and insulin lispro (lispro). These analogues all have a rapid onset of action (within 30–60 min) and a peak action within 2 h to allow for appropriate control of postprandial glucose (PPG) fluctuations when given within 5 min preprandially [5]. Glulisine differs from RHI by the replacement of asparagine by lysine at position B3 and lysine by glutamic acid at B29 [6]. The modifications in glulisine allow it to exist as more stable dimers and monomers at pharmaceutical

Correspondence to: Prof. David R. Owens, Diabetes Research Unit, 1st Floor Academic Centre, University Hospital Llandough, Penlan Road, Penarth CF64 2XX, UK. F-mail: owensdr@cardiff.ac.uk

¹Department of Internal Medicine, University of Perugia, Perugia, Italy

² Diabetes Research Unit, University Hospital Llandough, Vale of Glamorgan, UK

³ sanofi-aventis Paris France

⁴Centre de Recherche en Nutrition Humaine, INSERM U 915, Nantes, France

original article

concentrations, allowing glulisine to be suspended in a zinc-free buffer, unlike RHI and other rapid-acting insulin analogues [6]. Lispro differs in that the lysine and proline residues at the C-terminal end of the B chain are reversed, which prevents the formation of insulin dimers and hexamers. Aspart differs in that the amino acid residue at position B28 is substituted with aspartic acid, which increases charge repulsion to inhibit the formation of hexamers [6].

Glulisine has been shown to have a more rapid onset of action and a shorter duration of action compared with RHI in obese subjects without diabetes [7]. In addition, glulisine was shown to have a faster onset of action in obese subjects without diabetes [8] and faster absorption with higher postprandial insulin levels in people with T2DM compared with lispro [9]. Similar findings have also been reported in healthy individuals [10] and individuals with type 1 diabetes (T1DM) [11,12]. A recent study in healthy individuals has also shown a more rapid onset of action for glulisine compared with aspart [13].

To date, however, no study has directly compared the pharmacokinetic (PK) and pharmacodynamic (PD) properties of glulisine with those of aspart in people with T2DM. Therefore, the aim of this study was to conduct such a study in obese subjects with T2DM with the comparative insulins given immediately before a standardized test meal.

Materials and Methods

This was a multinational, randomized, double-blind, two-way crossover trial comparing the PK and PD characteristics of glulisine with those of aspart.

Study Population

Obese [body mass index (BMI) 30–40 kg/m²] males or females aged 18–70 years with T2DM for at least 1 year, treated with oral hypoglycaemic agents (OHAs) for at least 6 months and with HbA1c levels of less than 8.5% were eligible for this study. Subjects were excluded if they had T1DM or were currently using insulin. Further exclusion criteria were pregnancy or breastfeeding, taking medications known to influence insulin sensitivity (e.g. corticosteroids), a history of acute metabolic complications in the past 3 months, recurrent severe hypoglycaemia or hypoglycaemia unawareness, impaired renal or hepatic function and any history of drug or alcohol abuse.

All subjects provided written informed consent and the study was approved by an independent ethics committee at each of the three study sites (Perugia, Italy; Nantes, France and Cardiff, UK).

Study Design and Treatment

Subjects attended a screening visit, performed 1–2 weeks before the first study day, to confirm eligibility. At this visit, baseline characteristics, vital signs and laboratory tests (haematology, clinical chemistry, C-peptide level, HbA1c level and urinalysis) were evaluated after a 12-h fast. On the first study day, the subjects arrived at the respective research centres at approximately 8 a.m., after fasting and omitting

their OHAs for 12 h before the visit. In accordance with the randomization scheme, subjects received a 0.2 U/kg dose of either glulisine or aspart subcutaneously within 2 min before starting a standardized meal (692 kcal: 54% carbohydrate, 17% protein and 28% lipid), which they had to finish within 30 min. After a 7-day washout period, the same procedure was repeated using the alternative insulin preparation.

Blood samples were collected at -20 and -10 min and immediately before the meal (0 min), every 10 min for the first 2 h after the meal and then every 15 min for the remaining 4-h period of the study. Plasma glucose, insulin, C-peptide (Invitron, Monmouth, UK) and non-esterified fatty acid (NEFA; Wako NEFA-C kit, Wako Chemicals, Neuss, Germany) levels were determined using validated techniques. Aspart (Capio Diagnostics AS, Copenhagen, Denmark) and glulisine (Linco Research, Missouri, USA) concentrations were determined using analogue-specific assay kits at a central laboratory. All adverse events and episodes of hypoglycaemia were recorded.

Outcome Measures

The primary objective of this study was to assess the PD effect of glulisine compared with aspart on PPG excursions during the first hour after a standard meal, as measured by the area under the glucose concentration—time curve (AUC) between 0 and 1 h after insulin injection (AUC $_{0-1\,h}$). Secondary objectives included assessment of the PD effects of these insulins on PPG excursions up to 6 h after a standard meal (AUC $_{0-6\,h}$) and assessment of the postprandial insulin excursion after a standard meal in each treatment group. Other objectives were to evaluate C-peptide and NEFA levels in each treatment group.

Statistical Analysis

Pharmacodynamic parameters were derived from the individual glucose concentration profiles and PK parameters from the serum aspart and glulisine concentrations. The AUCs were calculated according to the linear trapezoidal rule [14]. PK analyses were carried out using a non-compartmental approach in order to determine maximum insulin concentration (C_{max}) and time to maximum insulin concentration (T_{max}) parameters from serum insulin concentrations. Also, the incremental AUCs (0-1, 0-2, 0-4 and 0-6 h for PD and PK), maximum glucose concentration (GLU_{max}), maximum incremental glucose excursion (ΔGLU_{max}) and C_{max} were analysed by analysis of variance with subject, treatment, sequence group and period effects. Two-sided 90% confidence intervals (CIs) were calculated for the mean differences or mean ratios. Time to ΔGLU_{max} and time to fraction of total glucose AUC (10 and 20%) and corresponding PK parameters [T_{max} and time to fraction of total insulin AUC (10 and 20%)] were analysed using Wilcoxon's signed rank test and Hodges-Lehmann 90% CIs were calculated for the median difference, as previously described [15]. Superiority testing was carried out at the 5% significance level. For any given variable (except time measurements), glulisine and aspart were considered to be clinically similar if the difference between them was non-significant and if the two-sided 90% CIs for the ratios of the means were within 80-125%.

PK and PD analyses were performed in all subjects who completed the study with no major protocol deviations and who had data considered as evaluable. Safety (hypoglycaemia and adverse events) was assessed for all subjects who were exposed to study treatment.

Results

Subject Disposition

A total of 43 subjects were screened, of whom six were excluded because of having a BMI outside the predefined range (n = 2), an HbA1c level of more than 8.5% (n = 2), age over 70 years (n = 1) or taking prohibited medication (n = 1). Therefore, 37 subjects [mean (\pm standard deviation) age 60.3 ± 8.3 years, BMI 33.7 ± 3.3 kg/m², diabetes duration 7.3 ± 4.9 years, HbA1c $7.1 \pm 0.8\%$] were randomized. Of the 37 subjects randomized, seven were subsequently excluded from the PK and PD analyses: one for premature withdrawal after the first study day (having received aspart) and six for major protocol deviations [two subjects with medical conditions at inclusion who were erroneously included; one each for use of corticosteroids during the study, missing PK/PD values in the first hour after drug administration, unusable PK assessments (very low aspart plasma levels, incompatible with aspart administration) and duration of meal intake longer than 30 min (85 min)]. The latter two subjects were excluded after the database lock, following a recommendation by the Steering Committee. Therefore, 30 subjects were included in the final analysis and the baseline characteristics are represented in Table 1. There were no differences between the subjects included in the final analysis and all randomized subjects (data not shown). The mean doses of glulisine and aspart were 19.5 ± 2.7 and 19.4 ± 2.7 U, respectively.

Pharmacodynamics

Mean blood glucose levels at baseline were 137.4 ± 33.2 and 140.5 ± 32.5 mg/dl for the glulisine and aspart groups, respectively. The plasma glucose concentrations over time are

shown in figure 1. Both mean AUC $_{0-1\,h}$ (149 vs. 158 mg·h/dl; p = 0.0455) and mean GLU $_{max}$ (170 vs. 181 mg/dl; p = 0.0337) were significantly lower with glulisine than with aspart. Point estimates (glulisine/aspart) for AUC $_{0-1\,h}$ and GLU $_{max}$ were 94% (90% CI: 90–99) and 94% (90% CI: 90–99), respectively (Table 2). No statistically significant differences were observed with baseline-subtracted data in any of the periods analysed (data not shown).

The AUC ratios for AUC_{0-1} h/AUC₀₋₆ h (p = 0.0334) and AUC_{0-2} h/AUC₀₋₆ h (p = 0.0341) were significantly lower for glulisine than aspart, with point estimates of 95% (90% CI: 92–99) and 96% (90% CI: 94–99), respectively (Table 2). Moreover, taking into account the total study duration (6 h), the overall plasma glucose concentration was similar between groups treated with glulisine and aspart.

Mean C-peptide plasma concentration profiles were similar after glulisine and aspart injections (data not shown), with maximum concentrations of 2.08 and 2.07 pmol/ml, respectively, occurring at 90 min for both insulin analogues.

Mean NEFA concentrations decreased from 0.50 to 0.11 mmol/l at 180 min with glulisine and from 0.51 to 0.11 mmol/l at 120 min with aspart; the NEFA concentrations then increased to 0.32 and 0.31 mmol/l with glulisine and aspart, respectively.

Pharmacokinetics

Table 2 also represents the PK results derived from the insulin concentration profiles illustrated in figure 2a. Peak insulin concentration was significantly higher for glulisine than for aspart (geometric mean of 534 vs. 363 pmol/l; p < 0.0001; figure 2b). Although $T_{\rm max}$ tended to be longer with glulisine (median of 120.0 vs. 93.0 min), this difference was not significant (p = 0.5133). Glulisine was associated with significantly higher AUCs for all four measurement durations (0–1, 0–2, 0–4 and 0–6 h; all: p < 0.0001), with point estimates for mean ratios (glulisine/aspart) ranging from 155% (90% CI: 141–171) for AUC_{0–6 h} to 197% (90% CI: 157–248) for AUC_{0–1 h}. In terms of AUC ratios, only AUC_{0–1 h}/AUC_{0–6 h} was significantly different between the groups, with the value

Table 1. Baseline characteristics of the study subjects.

	Sequence glulisine/aspart $(n = 16)$	Sequence aspart/glulisine $(n=14)$	All (n = 30)
Females/males, n	3/13	6/8	9/21
Age, years*	61.2 ± 7.7	59.7 ± 8.3	60.7 ± 7.7
Weight, kg*	100.4 ± 16.1	94.1 ± 10.7	96.3 ± 14.3
Height, cm*	173.1 ± 8.6	166.3 ± 7.2	169.4 ± 8.7
BMI, kg/m ² *	33.3 ± 3.4	34.0 ± 3.3	33.5 ± 3.3
Diabetes duration, years*	6.3 ± 4.0	7.5 ± 5.3	6.8 ± 4.6
HbA1c, %*	7.0 ± 0.8	7.2 ± 0.8	7.1 ± 0.8
Oral hypoglycaemic agents, n (%)	16 (100)	14 (100)	30 (100)
Biguanides	15 (3.8)	14 (100)	29 (96.7)
Sulphonylureas	5 (31.3)	9 (64.3)	14 (46.7)
Thiazolidinediones	3 (18.8)	3 (21.4)	6 (20.0)
Glinides	1 (6.3)	1 (7.1)	2 (6.7)

BMI, body mass index.

^{*}Data are mean \pm standard deviation.

original article

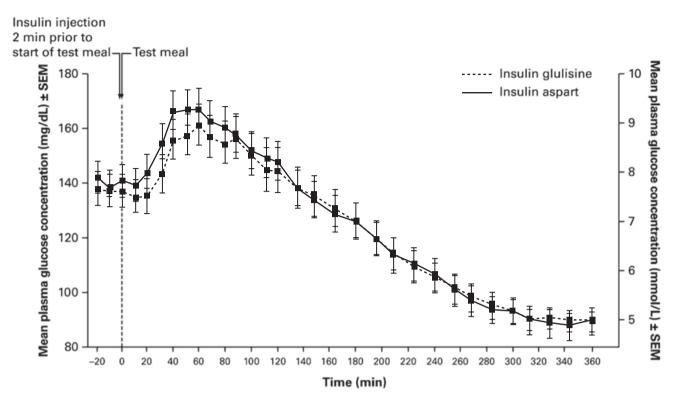


Figure 1. Mean plasma glucose concentrations over time. SEM, standard error of the mean.

of this ratio for glulisine being 127% of the equivalent ratio for aspart (90% CI: 106-152; p = 0.0340; Table 2).

Hypoglycaemia and Safety Parameters

A total of 13 (36.1%) subjects given glulisine and 16 (43.2%) subjects receiving aspart experienced an episode of hypoglycaemia (blood glucose <70 mg/dl with or without symptoms). Among these, 10 and 15 subjects, respectively, experienced an episode of hypoglycaemia 3–6 h after the insulin administration. The remaining episodes occurred 30, 110 and 135 min after glulisine administration and 60 min after aspart administration. Five and eight subjects, respectively, experienced an episode of hypoglycaemia with blood glucose levels below 56 mg/dl. None of the episodes was considered to be severe nor required intervention.

Five treatment-emergent adverse events were reported in four subjects, including injection-site pain (glulisine, one; aspart, one), headache (glulisine, one; aspart, one) and nausea (aspart, one). None of the adverse events was reported as serious.

Discussion

This two-way crossover study is the first to compare the PK/PD profiles of glulisine and aspart in people with T2DM, given a standard meal under identical baseline plasma glucose concentrations. During the first hour following insulin injection, the absolute plasma glucose concentration was significantly lower after administration of glulisine than with aspart

(p = 0.0455). Furthermore, the peak glucose concentration was also significantly lower after glulisine administration than after aspart (p = 0.0337). When considering the overall duration of the study, however, the plasma glucose levels and glucose excursions were similar between the two rapid-acting insulin analogues.

Care must be taken when interpreting the PK data, owing to the different assays used for each insulin analogue. As analogue-specific assays were used for determination of aspart and glulisine, the PK data were normalized to a percentage of $C_{\rm max}$ so that the data for the two analogues could be compared. Although there was no difference between groups over the study duration, there was a statistically significant difference in the measured mean insulin concentration over the first 20 min (figure 2b). The C-peptide and NEFA levels throughout the 6-h period were comparable in both groups, indicating that the results were not influenced by changes in endogenous insulin secretion and that both insulins have similar effects on carbohydrate utilization.

Overall, these findings are consistent with previous results obtained in a similar study comparing glulisine and lispro in obese subjects with T2DM [9], which also showed a lower maximum PPG excursion with glulisine. The findings are also consistent with the PD data observed in a study in healthy individuals [13]. These PK and PD differences could be related to the zinc-free formulation of glulisine, which, along with the structural modifications, help to prevent dimerization. Indeed, these changes facilitate the rapid uptake of glulisine from the subcutaneous depot after injection [5,6]. The addition of zinc

Table 2. Pharmacodynamic and pharmacokinetic results.

	Estimated sample mean (n = 30)			Estimate and 90% CI for mean ratios*	Estimate and 90% CI for mean differences§
	Glulisine	Aspart	p value	(glulisine/aspart)	(glulisine/aspart)
Pharmacodynamics results					
$AUC_{0-1 h}$ (mg·h/dl)	149	158	0.0455	94% (90-99)	_
$AUC_{0-6 h}$ (mg·h/dl)	738	750	0.5382	98% (95-104)	_
$AUC_{0-1 h}/AUC_{0-6 h}$ (%)	20	21	0.0334	95% (92-99)	_
$AUC_{0-2 h}/AUC_{0-6 h}$ (%)	41	42	0.0341	96% (94-99)	_
$AUC_{0-4 h}/AUC_{0-6 h}$ (%)	74	75	0.0912	99% (97-100)	_
ΔGLU_{max} (mg/dl)	33	40	0.0634	81% (70-100)	-8 (-15 to -10)
GLU _{max} (mg/dl)	170	181	0.0337	94% (90-99)	-11 (-19 to -3)
Time to ΔGLU_{max} (min)	60.0†	59.5†	0.3328	_	-5 (-20 to 5)¶
Time to 10% of total glucose AUC (min)	40.0†	40.0†	0.3566	_	-2 (-6 to 2)¶
Time to 20% of total glucose AUC (min)	67.5†	65.0†	0.9681	_	0 (−4 to 3)¶
Pharmacokinetics results					
$AUC_{0-1 h} (pmol \cdot h/l)$	272 (297)‡	138 (167)‡	< 0.0001	197% (157-248)	_
$AUC_{0-6 h} (pmol \cdot h/l)$	2002 (2077)‡	1289 (1333)‡	< 0.0001	155% (141–171)	_
$AUC_{0-1 h}/AUC_{0-6 h}$ (%)	14 (2.6)‡	11 (2.4)‡	0.0340	127% (106-152)	_
$AUC_{0-2 h}/AUC_{0-6 h} (\%)$	36 (3.6)‡	35 (3.6)‡	0.5566	103% (95-110)	_
$AUC_{0-4 h}/AUC_{0-6 h} (\%)$	78 (4.3)‡	77 (4.3)‡	0.3716	101% (99-103)	_
C_{\max} (pmol/l)	534 (570)‡	363 (385)‡	< 0.0001	147% (133-163)	_
Time to fraction of total insulin AUC (10%) (min)	60.0†	60.5†	0.0372	_	-12(-26 to -1)¶
Time to fraction of total insulin AUC (20%) (min)	90.0†	91.0†	0.9109	_	0 (−12 to 14)¶
T_{\max} (min)	120.0†	93.0†	0.5133	_	17 (−10 to 37)¶

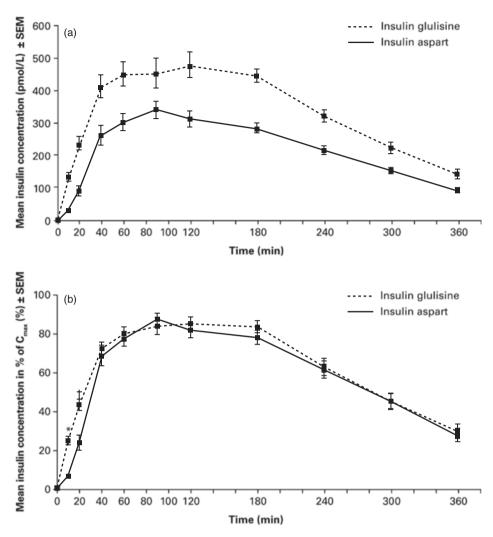
CI, confidence interval; $AUC_{0-X h}$, area under the curve for the period 0-X h; ΔGLU_{max} , maximum glucose excursion; GLU_{max} , peak glucose concentration; C_{max} , peak insulin concentration; T_{max} , time to peak insulin concentration.

to the rapid-acting analogues lispro and aspart formulations is necessary to prevent the formation of fibrils [5,16] and to promote the formation of stable hexameric and higher-order aggregates [17,18].

Excess adiposity can adversely affect the PK and PD properties of RHI [19-21]. Indeed, the site of injection may influence the PK and PD of short-acting insulins because body regions with greater skin thickness may show protracted absorption [22]. For example, ter Braak et al. reported that the C_{max} and T_{max} values for insulin (lispro and human insulin) varied between the two types of insulin and between the three injection sites (abdominal, deltoid and femoral sites) [22]. However, in that study, lispro was consistently associated with better PK and PD parameters vs. RHI, irrespective of the site of injection. Based on the results of the present study in obese individuals with T2DM and other studies in lean to obese subjects without diabetes, it transpires that the onset of action of the rapid-acting insulin analogues is not delayed in obese subjects when using a specific injection site [8]. Unfortunately, in both studies, the actual subcutaneous fat thickness was not assessed and BMI per se may not be a good marker for subcutaneous fat at the injection site.

Overall, the findings of the present study must be considered in light of the exploratory nature of this study and small sample size. It must also be noted that a strictly defined meal size and content and a fixed insulin dose were used in this study. Therefore, the results should not be generalized to the population as a whole because meal size and content and insulin doses will vary not only between individuals but also according to meals. However, dose proportionality of glulisine has been described in individuals with T1DM [11] and it is possible that a similar effect may be seen in individuals with T2DM; thus, prospectively altering the insulin dose based on meal content may be more appropriate than a predefined titration algorithm for some individuals [23]. In terms of PD, a similar pattern is likely to be seen to that observed in this study, but will clearly depend on the relative carbohydrate and fat content, aside from the effects of insulin resistance in individuals with T2DM.

In conclusion, this study, involving obese subjects with T2DM, showed that, at identical doses, glulisine was associated with a lower plasma glucose level than aspart during the first postprandial hour, in combination with significantly higher glulisine concentrations and when administered by bolus subcutaneous injection. During the remaining period of the test, there were no differences in the glucose profiles and glulisine levels were higher than aspart. Taken together, the lower early and late AUCs for glulisine support the earlier impact of glulisine, compared with aspart, on the PPG profile in response to a standard test meal.


^{*}For pharmacodynamic parameters, point estimate and 90% CI for the ratio of treatment means according to Fieller's Theorem, based on untransformed data. For pharmacokinetic parameters, point estimate and 90% CI for the ratios of the treatment means, based on ln-transformed data.

[†]Data are median.

[‡]Data are sample geometric mean (arithmetic mean).

^{\$}Point estimate and 90% CI for the difference of treatment means, from parametric data analysis (analysis of variance), based on untransformed data.

Point estimate and 90% CI for the difference of treatment medians from non-parametric analysis (Hodges and Lehmann method).

Figure 2. (a) Mean plasma insulin concentrations over time and (b) mean plasma insulin concentrations in percentage of peak insulin concentration over time. *p < 0.001 compared with insulin aspart at 10 min and †p > 0.001 compared with insulin aspart at 20 min. SEM, standard of the mean; C_{max} , peak insulin concentration.

Acknowledgements

This study was sponsored by sanofi-aventis (Clinical trial registration number: NCT01159353). Editorial support for this article was provided by the Diabetes Division of sanofi-aventis.

Conflict of Interest

G. B. B. has received honoraria for consulting and lecturing from sanofi-aventis and Novartis and honoraria for lecturing from Eli Lilly. S. M. has received a grant from sanofi-aventis. C. S.-L. is an employee of sanofi-aventis. B. C. has received fees for consultancy, advisory boards, speaking, travel or accommodation from Takeda, GlaxoSmithKline, Merck Sharpe and Dohme, AstraZeneca, Bristol Myers Squibb, Boehringer Ingelheim, Novo Nordisk, Roche, sanofi-aventis and Novartis. D. O. has lecturing commitments with sanofi-aventis and is an advisory board member for Roche. G. B. B. and C. S.-L. were involved in the study design, critical review of the manuscript

and final approval of manuscript prior to submission. S. L., Y. Z. and D. O. were involved in the study design, study conduct, data collection, data analysis, critical review of the manuscript and final approval of manuscript prior to submission. S. M. and F. P. were involved in the study conduct, data collection, critical review of the manuscript and final approval of manuscript prior to submission. B. C. was involved in the study design, data analysis, critical review of the manuscript and final approval of manuscript prior to submission.

References

- Nathan DM, Buse JB, Davidson MB et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2009; 32: 193–203.
- Akalin S, Berntorp K, Ceriello A et al. Intensive glucose therapy and clinical implications of recent data: a consensus statement from the Global Task Force on Glycaemic Control. Int J Clin Pract 2009; 63: 1421–1425.

original article

- Albarrak AI, Luzio SD, Chassin LJ, Playle RA, Owens DR, Hovorka R. Associations of glucose control with insulin sensitivity and pancreatic beta-cell responsiveness in newly presenting type 2 diabetes. J Clin Endocrinol Metab 2002: 87: 198–203.
- Heinemann L, Chantelau EA, Starke AA. Pharmacokinetics and pharmacodynamics of subcutaneously administered U40 and U100 formulations of regular human insulin. Diabete Metab 1992; 18: 21–24.
- Becker RH. Insulin glulisine complementing basal insulins: a review of structure and activity. Diabetes Technol Ther 2007; 9: 109–121.
- Becker RH, Frick AD. Clinical pharmacokinetics and pharmacodynamics of insulin glulisine. Clin Pharmacokinet 2008; 47: 7–20.
- Becker RH, Frick AD, Burger F, Potgieter JH, Scholtz H. Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese non-diabetic subjects. Exp Clin Endocrinol Diabetes 2005; 113: 435–443.
- 8. Heise T, Nosek L, Spitzer H et al. Insulin glulisine: a faster onset of action compared with insulin lispro. Diabetes Obes Metab 2007; **9**: 746–753.
- Luzio S, Peter R, Dunseath GJ, Mustafa L, Owens DR. A comparison of preprandial insulin glulisine versus insulin lispro in people with type 2 diabetes over a 12-h period. Diabetes Res Clin Pract 2008; 79: 269–275.
- Becker RH, Frick AD, Burger F, Scholtz H, Potgieter JH. A comparison of the steady-state pharmacokinetics and pharmacodynamics of a novel rapid-acting insulin analog, insulin glulisine, and regular human insulin in healthy volunteers using the euglycemic clamp technique. Exp Clin Endocrinol Diabetes 2005; 113: 292–297.
- 11. Becker RH, Frick AD, Nosek L, Heinemann L, Rave K. Dose-response relationship of insulin glulisine in subjects with type 1 diabetes. Diabetes Care 2007; **30**: 2506–2507.
- Danne T, Becker RH, Heise T, Bittner C, Frick AD, Rave K. Pharmacokinetics, prandial glucose control, and safety of insulin glulisine in children and adolescents with type 1 diabetes. Diabetes Care 2005; 28: 2100–2105.
- Arnolds S, Rave K, Hovelmann U, Fischer A, Sert-Langeron C, Heise T. Insulin glulisine has a faster onset of action compared with insulin

- aspart in healthy volunteers. Exp Clin Endocrinol Diabetes 2010; **118**: 662–664.
- Porcellati F, Rossetti P, Busciantella NR et al. Comparison of pharmacokinetics and dynamics of the long-acting insulin analogs glargine and detemir at steady state in type 1 diabetes: a double-blind, randomized, crossover study. Diabetes Care 2007; 30: 2447–2452.
- Chow SC, Liu JP. Design and Analysis of Bioavailability and Bioequivalence Studies, 2nd edn. Revised and Expanded. New York: Marcel Dekker, 2000.
- Sluzky V, Tamada JA, Klibanov AM, Langer R. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc Natl Acad Sci U S A 1991; 88: 9377–9381.
- Bakaysa DL, Radziuk J, Havel HA et al. Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex. Protein Sci 1996; 5: 2521–2531.
- Bhatnagar S, Srivastava D, Jayadev MS, Dubey AK. Molecular variants and derivatives of insulin for improved glycemic control in diabetes. Prog Biophys Mol Biol 2006; 91: 199–228.
- Vora JP, Burch A, Peters JR, Owens DR. Absorption of radiolabelled soluble insulin in type 1 (insulin-dependent) diabetes: influence of subcutaneous blood flow and anthropometry. Diabet Med 1993; 10: 736–743.
- Vora JP, Burch A, Peters JR, Owens DR. Relationship between absorption of radiolabeled soluble insulin, subcutaneous blood flow, and anthropometry. Diabetes Care 1992: 15: 1484–1493.
- Clauson PG, Linde B. Absorption of rapid-acting insulin in obese and nonobese NIDDM patients. Diabetes Care 1995; 18: 986–991.
- ter Braak EW, Woodworth JR, Bianchi R et al. Injection site effects on the pharmacokinetics and glucodynamics of insulin lispro and regular insulin. Diabetes Care 1996; 19: 1437–1440.
- Bergenstal RM, Johnson M, Powers MA et al. Adjust to target in type 2 diabetes: comparison of a simple algorithm with carbohydrate counting for adjustment of mealtime insulin glulisine. Diabetes Care 2008; 31: 1305–1310.

Monomeric Insulins and Their Experimental and Clinical Implications

Jens Brange, MSc David R. Owens, MD Steven Kang, MRCP Aage Vølund, PhD

Due to the inherent pharmacokinetic properties of available insulins, normoglycemia is rarely, if ever, achieved in insulin-dependent diabetic patients without compromising their quality of life. Subcutaneous insulin absorption is influenced by many factors, among which the associated state of insulin (hexameric) in pharmaceutical formulation may be of importance. This review describes the development of a series of human insulin analogues with reduced tendency to selfassociation that, because of more rapid absorption, are better suited to meal-related therapy. DNA technology has made it possible to prepare insulins that remain dimeric or even monomeric at high concentration by introducing one or a few amino acid substitutions into human insulin. These analogues were characterized and used for elucidating the mechanisms involved in subcutaneous absorption and were investigated in preliminary clinical studies. Their relative receptor binding and in vitro potency (free-fat cell assay), ranging from 0.05 to 600% relative to human insulin, were strongly correlated (r = 0.97). In vivo, most of the analogues exhibited ~100% activity, explainable by a dominating receptor-mediated clearance. This was confirmed by clamp studies in which correlation between receptor binding and clearance was observed. Thus, an analogue with reduced binding and clearance gives higher circulating concentrations, counterbalancing the reduced potency at the cellular level. Absorption studies in pigs revealed a strong inverse correlation (r = 0.96) between the rate of subcutaneous absorption and the mean association state of the insulin analogues. These studies also demonstrated that monomeric insulins were absorbed three times faster than human insulin. In healthy subjects, rates of disappearance from subcutis were two to three times faster for dimeric and monomeric

analogues than for human insulin. Concomitantly, a more rapid rise in plasma insulin concentration and an earlier hypoglycemic response with the analogues were observed. The monomeric insulin had no lag phase and followed a monoexponential course throughout the absorption process. In contrast, two phases in rate of absorption were identified for the dimer and three for the normal hexameric human insulin. The initial lag phase and the subsequent accelerated absorption of soluble insulin can now be explained by the associated state of native insulin in pharmaceutical formulation and its progressive dissociation into smaller units during the absorption process. In the light of these results, the effects of insulin concentration, injected volume, temperature, and massage on the absorption process are now also understood. When given to diabetic patients immediately before a standard meal, the monomeric analogue lowered postprandial glucose excursions by ~50% when compared with human insulin given at the same time. Subsequently, it was shown that three monomeric to dimeric analogues injected separately just before a meal gave glycemic control at least comparable to that of human insulin administered 30 min earlier. Lower plasma glucose concentrations (~50%) were observed with the analogues from 1.5 h postprandially. Thus, monomeric analogues are faster in onset of action, can be given with the meal without losing glycemic control, and have the potential to minimize late hypoglycemia. Therefore, the development of these novel insulins represents a major step in the evolution of insulin preparations to subserve meal-related insulin requirements. Diabetes Care 13:923-54, 1990

From the Novo Research Institute, Novo Nordisk A/S, Bagsvaerd, Denmark; and the University of Wales College of Medicine, Cardiff, United Kingdom. Address correspondence and reprint requests to Jens Brange, Novo Research Institute, Novo Alle, DK-2880 Bagsvaerd, Denmark.

he introduction of insulin in the 1920s revolutionized the treatment of diabetes (1). Subcutaneous injection therapy has, however, not succeeded in normalizing glycemic control, despite the efforts devoted to improvement in insulin preparations and in-

jection regimens. During the last decades, the increasing awareness and acceptance of the relationship between metabolic control and the occurrence of devastating microvascular complications have stimulated considerable research into new methods of improving insulin therapy. A major determinant of metabolic control is availability of insulin in the blood, and factors affecting absorption and disposal of insulin have been increasingly studied in recent years.

Normalization of plasma glucose concentrations requires normalization of the plasma insulin profile, with an appropriate elevation in plasma insulin during meals, to prevent unphysiological postprandial glycemia. Therefore, numerous investigations have focused on factors that might influence the rate of absorption of insulin from the subcutaneous injection site. Although the processes conveying the insulin from the injected depot to the blood are not known in detail, many factors relating to insulin formulation, site, method of administration and other conditions have been described.

In the field of pharmaceutical formulation, important improvements have emerged (2). Until recently, such developments have been restricted to improvement in insulin purity; insulin species; and adjustment of the composition of the vehicle with respect to retarding agent, auxiliary substances, and other additives. However, the introduction of recombinant DNA techniques has made it possible to optimize the insulin molecule for substitution therapy.

This article reviews efforts to create, by protein engineering, novel insulins better suited for meal-related therapy than native insulins (3). The physicochemical and biological properties of human insulin analogues, with reduced tendency to self-association, the use of these analogues to elucidate the mechanisms of absorption of unmodified (soluble or regular) insulin, and an early clinical evaluation are presented.

CLINICAL OBSERVATIONS

Physiological meal data in healthy and non-insulindependent diabetic (NIDDM) subjects. In healthy people, blood glucose concentrations are maintained within a narrow physiological range by highly efficient homeostatic mechanisms; only insulin lowers blood glucose concentration. The daily plasma glucose and insulin profile in nondiabetic subjects in response to various test meals has been well documented (4–14).

Figure 1 illustrates such observations during the preand postprandial state in healthy subjects. The β -cell secretion depicted by plasma immunoreactive insulin levels indicates a low basal level during fasting and a rapid increase in response to nutrient ingestion. Peak insulin levels are achieved within 0.5–1 h from the onset of eating, returning to basal levels within 2–3 h post-prandially.

Increasing glucose intolerance is commonly associated with a diminishing insulin secretory response to a

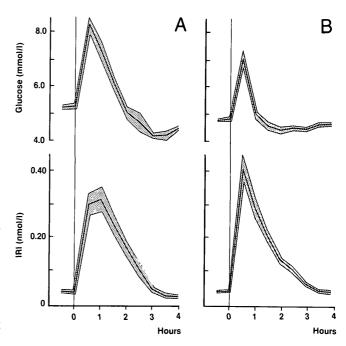


FIG. 1. Mean \pm SE plasma glucose and immunoreactive insulin (IRI) concentrations during oral glucose tolerance test (A; 75 g glucose, n=24) and standardized meal tolerance test (B; 500 kcal, carbohydrate 60% calorie contribution, n=34) in healthy nonobese subjects.

glucose challenge (15–21). Similar observations are seen in response to normal meal ingestion, clearly demonstrating an increasing deficit in early insulin secretion with deteriorating glucose tolerance in NIDDM (22,23; Fig. 2). This shows that inadequacies in the temporal and quantitative relationship between nutrient supply and insulin availability can seriously compromise glucose homeostasis. In insulin-dependent diabetes mellitus (IDDM), deficient β -cell secretion is always present, although some patients are still capable of secreting small quantities of insulin (24,25).

Basal insulin secretion and nutrient-stimulated insulin secretion are central ingredients in maintaining normoglycemia in humans, who eat sporadically and depend on carbohydrates as a major source of energy.

Current insulin treatment. Insulin-replacement therapy became a reality after the successful extraction of insulin from animal pancreas glands in 1922 by Banting and Best (1). Since insulin became available in its crudest form, major advances have occurred relating to production, purification, and pharmaceutical formulation (26–35; Table 1).

There is increasingly convincing evidence that poor metabolic control is associated with microvascular complications (36–49). Therefore, the diabetologist is committed to strive for normoglycemia while trying to avoid the dangers of hypoglycemia (44,50). Thus, the routine treatment of diabetic patients with insulin is constantly being reappraised in an attempt to achieve normal physiology and metabolism, as recently reviewed by Pickup

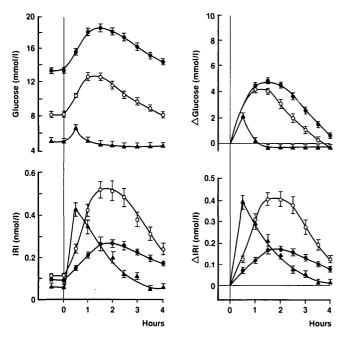


FIG. 2. Mean \pm SE plasma glucose (top left, absolute values; top right, incremental values) and immunoreactive insulin (IRI) concentrations (bottom left, absolute values; bottom right, incremental values) during meal tolerance test in healthy subjects (\triangle , n=54) and newly diagnosed previously untreated patients with non-insulin-dependent diabetes mellitus and fasting plasma glucose <10 mM (\bigcirc , n=71) or \geq 10 mM (\bigcirc , n=150).

(51), Home et al. (52), Skyler (53), Zinman (54), and Berger (55).

The pharmacokinetics after subcutaneous injection of available short-, intermediate-, and long-acting insulin preparations makes it virtually impossible to achieve normoglycemia (52–54,56–60). Attempts to achieve normoglycemia have therefore involved a multiplicity of insulin preparations, regimens, and delivery systems to provide for both basal and meal-related insulin requirements (61–63).

The most common subcutaneous insulin regimen involves twice-daily injection of mixtures of short- and intermediate-acting insulin preparations (62,64–66). Additional efforts to satisfy both basal and meal-related insulin requirements have resulted in the introduction of continuous subcutaneous insulin infusion with a portable pump with adjustable rates (67–71). Comparable glycemic control can, however, be achieved with intensively applied conventional treatment involving longacting ultralente insulin plus multiple preprandial injections of soluble insulin (72,73).

Insulin regimens and delivery systems, patient education, and self-monitoring techniques are constantly reevaluated to achieve better metabolic control in most patients. In this context, the use of multicomponent insulin regimens has demonstrated the value of providing more physiological insulin therapy in the form of meal-related (bolus) and basal requirements (66,72,74–79).

After subcutaneous injection of soluble insulin into the femoral region, it takes ~2 h for the insulin to be absorbed at maximum rate (80). This slow rise to peak insulin concentration is likely to account for much of the observed postprandial hyperglycemia. Because the insulin concentration falls slowly after the peak, the extended period of elevated insulin concentration results in a tendency toward late hypoglycemia (52). The peak effect may even persist for several hours if circulating insulin-binding antibodies are present (81–84; see IMMUNOLOGICAL ASPECTS). Such plasma insulin patterns bear no resemblance to those in healthy subjects in response to a meal (Figs. 1 and 2).

Although the influence of available short-acting insulins on postprandial glycemia can be improved by subcutaneous administration 30 min to 1 h before eating, the risk of delayed hypoglycemia remains, due to inappropriately high insulin levels persisting in the plasma 3-4 h after injection (56,85-90). Variation in subcutaneous absorption among different insulin formulations, concentrations, dosage levels, sites of administration, and injection techniques and the influence of exercise, massage, and ambient temperature are reviewed by Galloway et al. (56), Berger et al. (57), Binder et al. (58), Owens (59), and Schlichtkrull (80). Measures to alter these factors, to enhance the absorption rate of insulin from subcutaneous tissue, are either impractical, inconvenient, or unsafe to be used by the insulin-requiring diabetic patient on a day-to-day basis. **Subcutaneous absorption process.** The absorption of soluble insulin after subcutaneous injection involves a complex series of events influenced by many variables. Although the pharmacokinetics of insulin after subcutaneous administration has been extensively studied, especially over the last decade, understanding of the absorption process, which involves numerous physicochemical and physiological processes, is still far from complete (56-59,91-140; Table 2).

After subcutaneous injection of soluble insulin, an initial lag phase with a low but increasing relative rate of

TABLE 1
Major advances in development of insulin preparations

1922	Banting and Best (1)	Isolation of insulin
1934	Scott (26)	Zinc-insulin crystallization
1936	Hagedorn et al. (27)	Protamine insulins
	Scott and Fisher (28)	
1946	Krayenbühl and	Isophane insulin
	Rosenberg (29)	(NPH)
1952	Hallas-Møller et al. (30)	Lente series
1961	Schlichtkrull et al. (31)	Neutral regular insulin
1972	Schlichtkrull et al. (32)	Monocomponent insulin
1979-1982	Goeddel et al. (33)	Bio- and semisynthetic
	Chance et al. (34)	human insulin
	Markussen et al. (35)	

References are in parentheses.

absorption has been noted and can be observed in most clinical studies (96,101,102,122,141,142). This lagphase phenomenon has been hypothesized to be due to a local vasoconstrictor effect of insulin or distribution by local diffusion (101,143). This initial delay in absorption is shortened or even disappears with reduced concentration of insulin or decreased volume injected (100,101,144).

Besides the influence of the pharmaceutical formulation of the insulin preparation, many clinical studies have shown that insulin absorption from subcutaneous tissue is to a large extent controlled by local blood flow (101,110,127,145; Table 2). Therefore, factors known to influence blood flow, i.e., site and depth of injection, exercise, smoking, and temperature, also have an effect on the rate of insulin absorption from the subcutis (Table 2). The main influence of blood flow on absorption rate in the low blood flow range is related to the recruitment of capillaries, decreasing the diffusion distance, and to the concentration gradient between interstitial space and blood. However, at higher blood flow rates, factors other than blood flow are limiting for the rate of absorption of soluble insulin (135). These factors include 1) interstitial transport to the capillaries by diffusion and 2) the probable restriction for transport over the capillary membrane (total area and permeability). The effect of these factors is governed primarily by the size of the transported molecule.

The hexamer of insulin, the prevailing association unit

of insulin in neutral soluble insulin, has a diameter of \sim 5 nm and a height of \sim 3.5 nm (146; see INSULIN STRUCTURE). It is assumed that hexameric insulin after injection dissociates in subcutaneous tissue and is transported to the capillaries by diffusion and absorbed in its dimeric or monomeric form (101,147,148). This requires removal of Zn^{2+} and substantial dilution of the insulin depot, which would delay absorption (147; Fig. 3). It is not known if hexameric insulin can actually cross the capillary wall and, if so, whether the passage is more restricted compared with dimeric or monomeric insulin (dimensions of monomer \sim 2.5 \times 2 \times 3 nm).

In clinical studies, soluble human insulin has been reported to be absorbed slightly faster, resulting in higher plasma insulin levels than those from soluble pork insulin in healthy subjects and diabetic patients (89,91–96,98,99). However, the clinical significance of this small difference is questionable (59,94,96,149, 150). The mechanism of the increased absorption of human insulin relative to pork soluble insulin remains to be determined but has tentatively been explained by the more hydrophilic character of the human insulin molecule (150).

Many of the factors known to influence insulin absorption also have a more or less pronounced influence on the state of association of insulin or on the ease by which hexameric insulin dissociates into smaller units (Table 2). Concentration of insulin is a main determinant of the association state, and the higher the concentra-

TABLE 2 Factors influencing absorption of regular insulin

Factor	Blood flow relationship	Influence on insulin association state or dissociation rate	Refs.
Insulin formulation			
Species		++	91-99
Concentration		+++	59,100-103
Additives			
Aprotinin	+	BF	57,104-107
Blood serum	?	?	57
Prostaglandin E ₁	?	?	108
Phenoxybenzamine	+	BF	109
Injection conditions			
Body posture	+	BF	110
Anatomical region	+	BF	56,57,59,111–113
Depth	+	BF	56,101,102,114-116
Volume (dose)		+	101,117
Jet injection		+	56,118-121
Sprinkler needle		+	122
Other factors			
Exercise	+	BF	12,98,113,123-129
Massage	0	+	57,130,131
Smoking	+	BF	132
Temperature	+	++	57,127,133-135
Epinephrine infusion	0	?	136
Blood glucose concentration	0	?	137
Sense of vibration (neuropathy)	?	?	101

BF, influence via blood flow; ?, unknown or uncertain; 0, no relationship; +, ++, +++, increasing influence.

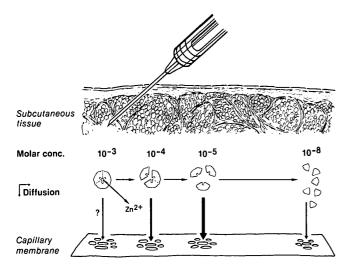


FIG. 3. Schema of putative events in subcutis after subcutaneous injection of soluble (regular) human insulin. Concentration of hexameric Zn insulin, the predominant association state of insulin in soluble insulin in U-40 or U-100 strength (U-100 ~0.6 mM), is lowered by diffusion in interstitial space. During this process, Zn-insulin hexamer complex disintegrates into smaller units. For dissociation into mainly dimeric insulin, 50- to 100-fold dilution is needed, whereas dominant population of monomeric insulin would require further 1000-fold dilution. Passage of more associated forms through capillary membrane is believed to be restricted due to steric hindrance.

tion, the higher the dilution required for dissociation of the insulin hexamer. The species of insulin may also have an influence on the tendency to dissociation of the hexamer on dilution, as shown for pork and human insulin (see PROOF OF CONCEPT AND ELUCIDATION OF AB- SORPTION MECHANISM). Factors that influence blood flow and the effect of massage will result in changes in the rate of dispersion and subsequent dilution of the insulin depot and, consequently, alter the rate of dissociation of the oligomeric insulin units. Temperature, in addition to its effect on blood flow, has a direct influence on insulin association, because a shift from ambient to physiological temperatures leads to increased dissociation (J.F. Hansen, unpublished observations). It is probable that protein additives may also interfere with insulin association.

Apparently, absorption can be accelerated by factors with a direct or indirect influence on the association state of insulin or the rate by which associated insulin units disintegrate into smaller elements. Therefore, absorption rate may be increased by reducing the association state and thereby the average volume of the insulin units. Thus, administration of monomeric insulin would be expected to result not only in faster diffusion and less restricted transport but also in the time usually required for dilution and subsequent dissociation of insulin into mainly dimers (100-fold dilution) to reach maximal rate of absorption (lag phase) (Fig. 3).

INSULIN STRUCTURE

Native insulins. In 1928, insulin was found to be a protein (151), but the sequence of its 51 amino acids (primary structure) was first solved by the pioneering work of Ryle et al. (152; Fig. 4). The elucidation of the three-dimensional arrangement of the atoms in insulin rhombohedral crystals was expounded from 1969 to 1988 by the extensive work of Blundell et al. (146),

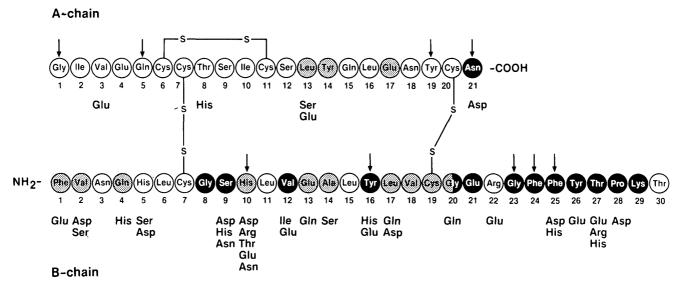


FIG. 4. Primary structure of human insulin with indications of amino acid residues involved in association of 2 insulin molecules into dimer (black residues) and in assembly of 3 dimers and 2 Zn²⁺ into Zn²⁺-insulin hexamer (gray residues). Putative sites interacting with receptor are indicated by *arrows*. Sites and type of mutation in different analogues are also shown (for composition of individual analogues see Table 4).

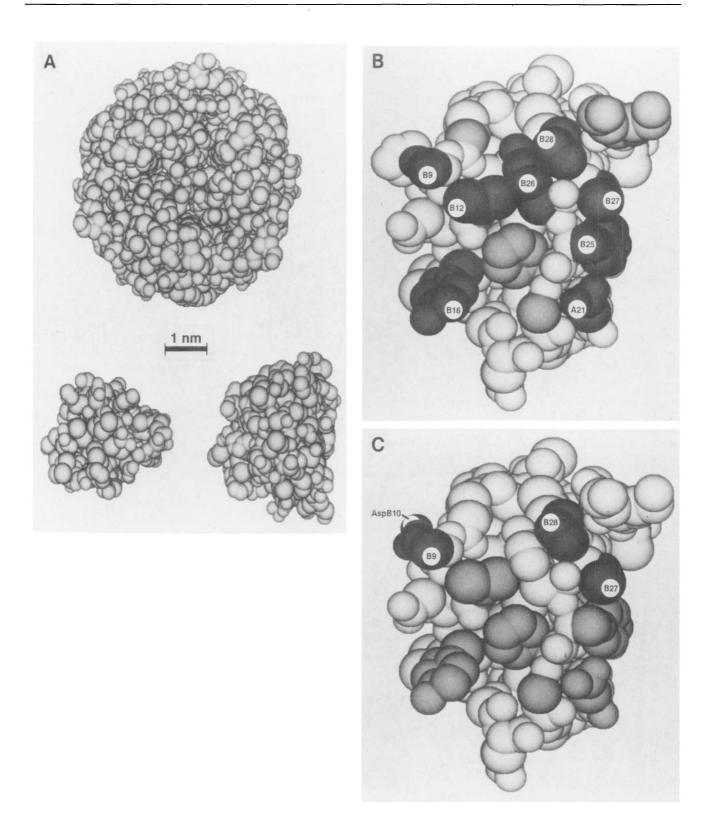


FIG. 5. Space-filling models of human insulin (van der Waal radii). A: relative sizes of monomer, dimer, and hexamer of insulin. B: view of monomer of insulin showing dimer forming surface. Side-chain atoms (for Gly α -carbon in main chain) of residues with \leq 4 Å contacts (ref. 154) in dimer are shown in darkest colors. Side chains substituted in analogues are indicated by darkest color and denoted by number of residue. C: monomer of insulin as viewed in B. Gray atoms indicate side chains (for Gly α -carbon) of residues believed to be essential for receptor interaction. Sites of substitution in 3 analogues tested clinically are shown with dark-colored side chains and denoted by number of residue (see CLINICAL STUDIES). Actual change of residue is only shown for Asp⁸¹⁰ analogue, which allows comparison of its approximate structural changes relative to human insulin (B).

Adams et al. (153), and Baker et al. (154), revealing the tertiary and quaternary structures of the insulin molecule in its hexameric, dimeric, and monomeric states (Fig. 5A).

The physiological concentration of insulin is normally <1 nM, which ensures that insulin circulates and exerts its biological effects as a monomer (146,155–157). At higher concentrations, insulin dimerizes (association dimer), not to be confused (158) with the covalent dimer formed in small amounts during storage of insulin preparations (2,159). In neutral solution in the presence of Zn²⁺, three dimers assemble to form a hexamer of insulin monomers (146). Hexamers of insulin, with the shape of a slightly flattened sphere, are the predominant association species of zinc insulin, at least down to a concentration of 0.1 mM, and therefore also the main association state found in neutral soluble insulin (U-100 ~0.6 mM) (160).

Many of the structural properties of insulin have evolved in response to the requirements of biosynthesis, processing, transport, and storage (146). The pattern of assembly facilitates proinsulin conversion and the subsequent crystallization and storage of hexameric insulin in β-cell granules but is evidently not connected to the interaction of insulin as a monomer to its receptor (161). **Exceptional and synthetic insulins.** Primary structures have been published for >50 animal species of insulin, but only a few of these insulins have impaired association properties, and only those belonging to the hystricomorph rodent family have been found unable to dimerize. These insulins, however, have an altered tertiary structure and substantially reduced biological potency (162–172; Table 3).

Numerous modifications of the primary structure of insulin have been made by total synthesis or semisynthesis (146,173,174). Few of these derivatives have been reported not to aggregate, but, with the exception of despentapeptide insulin, these insulins have impaired in vivo potency (Table 3). Despentapeptide insulin, however, is not physically stable in solution, especially in the presence of divalent metal ions (175). Sulfated insulin normally consists of a heterogeneous mixture of many different derivatives that are probably partly unfolded (2,171; see PROOF OF CONCEPT AND ELUCIDATION OF ABSORPTION MECHANISMS).

Protein engineering. Advances in genetics and molecular biology have now provided convenient methods for introducing changes into a native protein with the purpose of evaluating how side chains contribute to the physicochemical and biological properties of the protein. Recombinant DNA technology has made it possible to engineer modifications into the amino acid sequence of insulin, enabling production of insulin analogues with one or more changes of amino acid residues with the intention to investigate the role of the individual amino acid in the molecular assembly, biological activity, and therapeutic properties. The pioneering work of Winter and Fersht (176) and Fersht et al. (177) has resulted in research that has revealed that the

capacity of a protein to dimerize can be abolished by site-specific mutagenesis (178). These new opportunities have made possible a new approach in optimizing insulin preparations for therapeutic use, i.e., redesign of the active drug for better replacement therapy.

The therapeutic limitations of available insulins were reemphasized by the work group on insulin therapy at the First World Conference on Diabetes Research (Juvenile Diabetes Foundation, 1985), recommending that monomeric insulins and insulin derivatives should be tested. In response, this review relates to the development of monomeric insulins in an attempt to achieve a more physiological, quantitative, and temporal post-prandial insulin profile, obviating the need for administration of soluble insulin 0.5–1 h before food, thereby improving compliance and minimizing the risk of delayed hypoglycemia (3,179,180).

Parallel developments in protein engineering are also making it possible to produce insulins with improved properties to simulate basal insulin secretion (181,182).

CREATION OF INSULINS WITH REDUCED SELF-ASSOCIATION

Rationale, concept, and strategy. The concordance between factors with a mutual influence on insulin association and absorption rate (Table 2), together with the fact that smaller molecules or units diffuse more quickly and are less hindered in passing through the capillary membrane, strongly indicates that insulin with reduced tendency to self-association would be more quickly absorbed after injection (see CLINICAL OBSERVATIONS). Therefore, experiments to create insulins with reduced self-association were undertaken with computer-aided molecular modeling and DNA technology (3,179,183).

A rational approach to insulin engineering requires detailed knowledge about the conformation of the molecule and its modes of interaction at the atomic level

TABLE 3
Natural (N) and semisynthetic (S) monomeric insulins

			Pote (%		
Insulin	Source	Mutations/ changes	In vitro	In vivo	Refs.
Guinea pig	N	18	2	9	163,164
Casiragua	Ν	21	5		165
Coypu	Ν	22	3		166
Porcupine	Ν	8	4		167
Despentapeptide					
B26-B30	S	6	25	77	168,169
Despentapeptide					168
B26-B30 amide	S	5	105		
Sulfated	S	4-5		~20	170,171
Tetranitrotyrosine	S	4		50	172

All data relative to human insulin.

within and between subunits. The insulin hexamer found in neutral solution is believed to be the same as that observed in crystals (146,184–186). Therefore, the precise information regarding the arrangement of the individual atoms in the tertiary structure, as determined by X-ray crystallography, has been used to analyze the interactions between insulin monomers in dimers and hexamers and to predict the alterations necessary to produce changes in association pattern (153,154). Model building and computer graphics were essential elements in these considerations.

The aggregation surfaces, which direct the assembly of the insulin molecules into dimers and hexamers, involve mainly B-chain residues that, in several cases, are also included in the putative receptor-binding region of

the hormone and are to a greater or lesser extent essential for biological potency of the hormone (187,188; Figs. 4 and 5, *B* and *C*). The amino acid substitutions were selected after reviewing the aggregating surfaces and their interactions in dimeric and hexameric units. Because dimer formation is a necessary requirement for higher aggregation, the main targets have been the residues responsible for dimer formation, including a few of those involved in receptor binding (156; Figs. 4 and 5*B*; Table 4). An important requirement for alterations in amino acid residues has been to retain the integrity and overall tertiary structure of the monomer to avoid a large reduction in bioactivity, which is the case with the naturally occurring monomeric insulins (162; Table 3).

The different strategies used for counteracting asso-

TABLE 4
Association behavior and biological characteristics of analogues

Human insulin analogue Asp ⁸⁹ Asn ⁸⁹ His ⁸⁹ Asp ⁸¹⁰ Arg ⁸¹⁰ Thr ⁸¹⁰ Ile ⁸¹² Glu ⁸¹² (plus des-B30) His ⁸¹⁶ Gln ⁸¹⁷	when zinc free (osmometry 1 mM; 21°C)* 1.1 ~4 4.5 2.2 4.2 3.5 3.3 1.0 1.0 2.3 3.7	26 47 69 207 50 72 29 0.04	MBG† 79 98 90 86	RBA‡	Negative cooperativity low/high concentration§ +/- +/- +/-	Code used in Fig. 7 5 T E
Asn ⁸⁹ His ⁸⁹ Asp ⁸¹⁰ Arg ⁸¹⁰ Thr ⁸¹⁰ Ile ⁸¹² Glu ⁸¹² (plus des-B30) His ⁸¹⁶	~4 4.5 2.2 4.2 3.5 3.3 1.0 1.0 2.3 3.7	47 69 207 50 72 29 0.04 43	98 90		+/- +/-	T E
Asn ⁸⁹ His ⁸⁹ Asp ⁸¹⁰ Arg ⁸¹⁰ Thr ⁸¹⁰ Ile ⁸¹² Glu ⁸¹² (plus des-B30) His ⁸¹⁶	4.5 2.2 4.2 3.5 3.3 1.0 1.0 2.3	69 207 50 72 29 0.04 43	90		+/-	E
Asp ⁸¹⁰ Arg ⁸¹⁰ Thr ⁸¹⁰ Ile ⁸¹² Glu ⁸¹² (plus des-B30) His ⁸¹⁶	2.2 4.2 3.5 3.3 1.0 1.0 2.3	207 50 72 29 0.04 43	90		+/-	E
Asp ⁸¹⁰ Arg ⁸¹⁰ Thr ⁸¹⁰ Ile ⁸¹² Glu ⁸¹² (plus des-B30) His ⁸¹⁶	4.2 3.5 3.3 1.0 1.0 2.3 3.7	50 72 29 0.04 43	90			E
Arg ^{B10} Thr ^{B10} Ile ^{B12} Glu ^{B12} (plus des-B30) His ^{B16}	4.2 3.5 3.3 1.0 1.0 2.3 3.7	50 72 29 0.04 43	90			
Thr ^{B10} Ile ^{B12} Glu ^{B12} (plus des-B30) His ^{B16}	3.5 3.3 1.0 1.0 2.3 3.7	72 29 0.04 43	86			
Glu ^{B12} (plus des-B30) His ^{B16}	3.3 1.0 1.0 2.3 3.7	0.04 43	86			
Glu ^{B12} (plus des-B30) His ^{B16}	1.0 1.0 2.3 3.7	0.04 43			+/-	3
His ^{B16}	1.0 2.3 3.7	43		0.15		9
	2.3 3.7			35		
	3.7	13			+/+	R
GIn ^{B20}		88	73			
Asp ^{B25}	2.2	0.10		0.05	(-)/-	
His ^{B25}	3.9	45		28	+/-	
Glu ^{B26}	2.0	125	104	158		Α
Glu ^{B27}	4.0	108	110	87	+/-	1
Asp ⁸²⁸	1.3	101	104	88	+/-	F
Glu ^{A13} ,Glu ^{B10}	1.9	14		27		
Ser ^{A13} , Glu ^{B27}	2.9	11			+/+	
Asp ^{A21} , Glu ^{B27}	1.5	87	61		+/-	4
Glu ^{B1} , Glu ^{B27}	2.6	97				
Ser ^{B2} , Asp ^{B10}	~2	253		385		
Asp ⁸⁵ , Asn ⁸¹⁰	_	0.13				
Asp ^{B9} , Arg ^{B27}	1.6	40	77			
Asp ⁸⁹ , Glu ⁸²⁷	1.1	31	93	20	+/-	2
Asp ⁸¹⁰ , Asp ⁸²⁸	1.6	201				X
Glu ^{B12} ,Gln ^{B13}	1.2	0.05		< 0.05		
Ser ^{B14} , Asp ^{B17}	~2	6	30			
Glu ^{B16} , Glu ^{B27}	1.1	13	55		+/-	8
Asp ^{B2} , Ser ^{B5} , Glu ^{B27}	4.0	30	55	23		0
Glu ^{A3} , Glu ^{B10} , Glu ^{B22}	1.2	0.06				-
His ^{AB} , Asp ^{B9} , Glu ^{B27}	1.1	116	114	94		7
His ^{A8} , Asp ^{B10} , His ^{B25}	1.7	203			+/-	•
Asp ^{A21} , Asp ^{B9} , Glu ^{B27}	1.1	25	<i>7</i> 5		• •	6
His ^{A8} , His ^{B4} , Glu ^{B10} , His ^{B27}	~2	573	86	503	+/-	•
Human, Zn ²⁺ free	4.4	3, 3	00	505	. ,	Z
Human, 2 Zn ²⁺ /hexamer	6	100	100	100		H

^{*}Data from refs. 3, 183; J.F. Hansen, unpublished observations.

⁺FFC, free-fat cell assay; MBG, mouse blood glucose assay. Data from refs. 3, 183; A.R. Sørensen, unpublished observations.

[‡]RBA, receptor-binding affinity (human hepatoma cell line). Data from refs. 3, 183, 214; K. Drejer, unpublished observations.

^{§+,} Presence; -, absence of negative cooperativity. Data from ref. 217.

ciation are shown in Table 5. The primary strategy followed was to introduce charge repulsion into the interfaces. Addition of positive charge will, because the isoelectric point of insulin is ~5.4, tend to decrease solubility of the resulting insulin at physiological pH. Therefore, negative charges (amino acids with carboxylic acid in the side chain) have been used in most cases. Side-chain carboxyl groups (Asp or Glu residues) in some cases already exist adjacent to the interface and have been chosen as opponents to an inserted negative charge in the opposite unit. Examples of analogues produced according to the different strategies are shown in Table 5.

Association state and tendency to dissociation. The association pattern of the analogues was assessed by various physicochemical methods including osmometry and size-exclusion chromatography (SEC) (3,189).

The osmotic pressure over a semipermeable membrane, impermeable to insulin and separating a solution of insulin from the pure solvent, is a function of the number of solute particles per unit volume. Therefore, measurement of the osmotic pressure of an insulin analogue relative to that of hexameric human insulin gives an estimate of the mean association state of the insulin analogue at a particular concentration. The results of such measurements at 1-mM concentration, which is well above the normal pharmaceutical strength (U-100 ~0.6 mM), are given in Table 4. It appears that 33% of the analogues are essentially monomeric and another 33% primarily dimeric. The remaining analogues are more associated, although less than the parent molecule, which has a mean association state of 4.4 in its Zn²⁺-free state. Note that, if the temperature is increased to 37°C, then the dimeric Asp^{B10} analogue also becomes more widely dissociated (J.F. Hansen, unpublished observations).

The mean association state, however, does not give information about the strength by which the individual units are held together. The tendency of the assembled insulin to dissociate into smaller units during lowering of the insulin concentration can be evaluated in SEC experiments. The time of elution and the elution pattern give a qualitative measurement of this property and can be used for differentiating insulins with the same mean association state as deduced from osmometry. The elu-

TABLE 5
Counteraction of insulin association

Strategy	Examples	
Charge repulsion		
With already existing charge	Asp ⁸⁹ (Ser), Glu ⁸¹² (Val), Asp ⁸²⁵ (Phe), Asp ⁸²⁸ (Pro)	
Introducing charge counterparts	Glu^{B27} (Thr) + Asp ^{A21} (Asn)	
Steric hindrance	lle ⁸¹² (Val)	
Hydrophilicity into hydrophobic interfaces	Glu ^{B16} (Tyr), Gln ^{B17} (Leu), Glu ^{B26} (Tyr)	
Removal of metal-binding sites	Asp ^{B10} (His), Thr ^{B10} (His)	

Amino acid residue in parentheses is residue in human insulin.

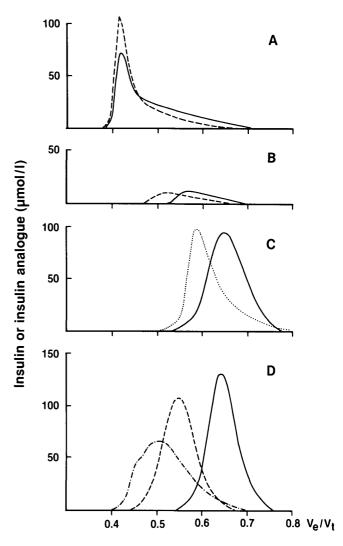


FIG. 6. Size-exclusion chromatography on Bio-Gel P-60, 100-200 mesh (25 × 440 mm). Eluent, 0.04 M Tris, 0.01 M NaCl, pH 8.0; elution rate, 3 cm/h. Photometer readings at 276 nm were transformed to molar concentration with molar absorption coefficient of 6.2 · 103 M⁻¹ · cm⁻¹. V_e, elution volume; V₁, total column volume. Curves in each panel (A-D) represent consecutive runs on same column. A: applied 1.3 µmol pork (dashed line) and human (solid line) 2 Zn²⁺ insulin (10 mg in 1 ml ~U 220 ~1.3 mM). B: applied 0.3 µmol pork (dashed line) and human (solid line) 2 Zn⁺ insulin (2 mg in 1 ml \sim U 50). C: applied 1.7 μ mol Asp^{B10} (dotted line) and Asp^{B28} (solid line) analogue each in 1 ml. D: applied 2.0 µmol sulfated beef insulin (dashed line); 2.0 µmol Asp⁸⁹, Glu⁸²⁷ analogue (solid line); and 1.7 µmol Zn2+-free human insulin (dashed and dotted line) all in 1 ml. Dilution taking place during passage of column (peak concentration) will appear to be 10- to 20-fold.

tion profiles of different insulins are shown in Fig. 6. Whereas monomeric analogues elute late in the chromatogram as a symmetric peak, dimeric analogues and human insulin elute earlier with asymmetric distribution dependent on the Zn²⁺ concentration (see PROOF OF CONCEPT AND ELUCIDATION OF ABSORPTION MECHANISMS). **Structure and stability.** All current mutations are on the surface of the monomer and are not likely to grossly

influence the three-dimensional structure of the mutants relative to that of native insulin. A few of the analogues have been crystallized, and X-ray crystallographic analysis revealed small structural changes that generally only occur in the neighborhood of the altered residue when compared with human insulin (190; G. Dodson, unpublished observations). Although the Asp^{B9}, Glu^{B27} analogue is essentially monomeric at 1-mM concentration, it does crystallize as a hexamer in the presence of 1% phenol in addition to Zn2+ and Ca2+. Crystallographic studies have shown that the structure is similar to the native monoclinic phenol structure described by Derewenda et al. (191), except for several Ca²⁺-binding sites situated in the core of the mutant hexamer (J.P. Turkenburg, unpublished observations). The presence of Ca²⁺ in the structure explains the formation of the hexamer with 12 negatively charged carboxylic acids closely packed together. Preliminary crystallographic studies on crystals of the Asp^{B10} analogue have indicated that the molecules are arranged as dimers with a structure similar to that seen in the cubic structure of native insulin (192; J.P. Turkenburg, unpublished observations).

Studies by nuclear magnetic resonance (NMR) spectroscopy of the monomeric Asp⁸⁹ analogue in neutral solution have shown that this mutant and monomeric human insulin (low concentration) exhibit nearly identical proton NMR spectra. This strongly indicates that the Asp⁸⁹ mutant and nonaggregated human insulin have similar three-dimensional structures in solution, whereas the free-monomer conformation of native human insulin is not the same as that in the associated state (193,194). This result is in agreement with earlier conclusions by Bi et al. (185) that monomeric despentapeptide insulin has a definite three-dimensional structure in solution, essentially identical to that of insulin in its hexameric crystalline form (153,154). Whether a similar unaltered tertiary structure also applies to other analogues with reduced association tendency remains to be seen.

The physical stability (resistance to precipitation as insulin fibrils) of insulin in solution has been demonstrated to increase by stabilization of the hexameric state of insulin (195,196). This effect is explained by insulin fibrils being formed via the monomeric state (197). The chemical stability (resistance to degradation by chemical reactions) of insulin has been shown to improve when the flexibility of the molecule is reduced on association and crystal formation (J.B., unpublished observations).

Consequently, the stability of a nonassociating insulin would be expected to be less than that of an associated insulin. Preliminary investigations have shown that this is the case for many of the analogues; however, a pharmaceutical formulation with satisfactory physical and chemical stability has been developed for the Asp^{B10} analogue (S. Havelund, unpublished observations). Selected analogues with comparable and, in some respects, even largely improved stability relative to hu-

man insulin are under development (L. Langkjaer, unpublished observations).

BIOLOGICAL AND PHARMACOLOGICAL PROPERTIES

Receptor binding. It is generally accepted that binding of an insulin molecule to its receptor is the initial event for eliciting biological responses. It also appears that receptors from different cell types within the same subject have similar binding affinities but differ with respect to the binding capacity or number of surface-active receptor-binding sites. Because of this variation, binding studies are often conducted as comparative assays, in which the binding properties of a test insulin are compared with those of a reference.

The relative receptor-binding affinities were obtained with the human hepatoma cell line (HepG2) (198; Table 4). The assays were performed at 4°C to minimize internalization and degradation of insulin. The displacement of ¹²⁵I-labeled human insulin by increasing concentrations of the analogue and cold human insulin was analyzed according to the dose-response relationship to yield an estimate of the relative equilibrium-binding affinity.

Substitution of a few amino acids can reduce the binding affinity by a factor of ~2000 or increase it sixfold (Table 4). The Asp⁸¹⁰ analogue has also been studied by Schwartz et al. (199), who found a potency of $534 \pm 146\%$ relative to bovine insulin in receptor-binding assays with rat liver plasma membranes. Previously, the D-PheB24 analogue of human insulin had been found to have increased binding (180%) to cultured human lymphocyte receptors relative to human insulin (200). Of the native insulins, only those from turkey and chicken have been found to have increased binding affinity to mammalian receptors (201). These insulins differ from human insulin in seven positions, but the substitution (to His) in position 8 in the A chain is the predominant explanation of the increased affinity (174). Note that pork and beef insulin, which differ in exactly the same position (Thr and Ala, respectively), have been found to have the same receptor-binding affinity (202).

The question of how several substitutions modify receptor binding has been studied, and it was found that the effect of two or more substitutions could be approximately described by multiplication of the relative potencies associated with the single-site substitutions (P. Hougaard, unpublished observations). For example, realizing that the His^{A8} substitution enhances the receptorbinding affinity as mentioned above, the reduced affinity (20%) of the disubstituted Asp^{B9}, Glu^{B27} analogue is compensated in the trisubstituted His^{A8}, Asp^{B9}, Glu^{B27} analogue with 94% binding affinity (Table 4). Likewise, by combining the two affinity-enhancing substitutions, His^{A8} and a negative charge (Asp or Glu) in position B10, in the same analogue (His^{A8}, His^{B4}, Glu^{B10}, His^{B27}), a high-affinity analogue is obtained (Table 4). This general multiplicative rule for combination of effects of substi-

tutions indicates independence between the individual sites in binding to the receptor.

Most of the insulin analogues or derivatives that have been studied have exhibited reduced receptor binding in various assay systems (203–212). The availability of a long series of insulin analogues with a range of binding affinities may have potentially important applications as tools to analyze the structural determinants for binding of insulin molecules to receptors and modifying post–receptor-binding events. Because it would be expected that modified-binding affinity would be associated with modified biological effects, insulin analogues with increased receptor binding may also exhibit increased biopotency.

Because insulin also has some ability to bind to the insulin growth factor (IGF) receptors, it would be of interest to determine whether the monomeric analogues have similar low binding affinities (212,213). Drejer et al. (198) tested a subset of the analogues relative to IGF-I and found a similar ranking as shown for binding to the insulin receptor (K. Drejer, V. Kruse, U.D. Larsen, S. Gammereltoft, unpublished observations; Table 4). However, the binding affinities of the insulin analogues were at least a factor of 1000 lower than that of IGF-I, suggesting that the analogues are not expected to change the balance between metabolic and growth-promoting actions mediated via insulin and IGF-I receptors. Binding of the analogues Asp⁸⁹, Asp⁸¹⁰ and Asp⁸²⁸ to the IGF amniotic fluid-binding protein has been found to be undetectable. Even extraordinarily high doses of the insulin analogues could not displace labeled IGF-I from the binding protein (E.M. Spencer, unpublished observations).

An interesting feature of the binding of insulin to cell surface receptors is the phenomenon of negative cooperativity, meaning that insulin binding induces a loss of affinity of the other receptor sites for insulin due to an accelerated dissociation rate of the insulin-receptor complex (215,216). This is assumed to be related to sitesite interactions between cell surface-located insulinreceptor complexes and secondary conformational changes after initial binding. Because the physiological significance of this phenomenon is not clear, it is important to determine whether the monomeric insulin analogues exhibit negative cooperativity to the same extent as human insulin. Animal insulins, including the monomeric guinea pig insulin, show intact negative cooperativity, whereas despentapeptide insulin has an impaired capacity to elicit negative cooperativity (216; Table 3). Of the 15 analogues analyzed, only the Asp⁸²⁵ analogue, with low binding affinity for the receptor, revealed a probable deviation from full ability to induce negative cooperativity (217; Table 4). The negative cooperative effect normally decreases when the insulin concentration in the medium exceeds 10^{-7} M (215). Because the two nonaggregating insulins, guinea pig and tetranitrotyrosyl insulin, show no tendency to such a decrease, this disappearance of cooperativity at high concentrations has been explained by insulin-dimer formation (216; Table 3). The results obtained with current monomeric analogues clearly indicate that the fall in negative cooperativity at increased insulin concentration is unrelated to the capacity of insulin to form dimers (217; Table 4; M. Kobayashi, unpublished observations). The only two analogues that did not show the disappearance of negative cooperativity at high concentration were substituted (A13 and B17 residues) in the surfaces interacting when dimers form a hexamer. This result indicates that interaction of the unlabeled insulin (with prebound 125I-labeled insulin or with another receptor domain) stabilizes, at high concentration, a tightly bound state of the 1251-labeled insulin-receptor complex and abolishes the negative cooperativity (217). In vitro biological activity. In addition to receptor-binding activities, relative potencies of the analogues determined in the free-fat cell bioassay are also shown in Table 4. The assay is identical to the method developed by Moody et al. (219), which is based on the incorporation of [3-3H]glucose into lipids during a 2-h incubation of free fat cells from mice at 37°C. It appears from the results that the free-fat cell and the receptor-binding activities are closely correlated (Table 4). Calculation of the correlation coefficient yields a value of 0.97 (P <0.001). Similar close relationships between receptor binding and biological effects in the same cell systems have been reported earlier (206,220).

This relationship is fundamental for the above-mentioned concept that the metabolic effects of insulin require binding of the molecule to its receptor. Maximal metabolic effects are attained at relatively low binding levels corresponding to a receptor occupancy of ~5-10%. Several studies that used partially overlapping methods for determining receptor binding to different cell types and biological activities (with various cell systems and metabolic responses) have given similar results for a range of insulin analogues and derivatives (3,199,200,203–206,208–212,220). Thus, it seems reasonable, as a useful approximation, to characterize insulin analogues or derivatives by in vitro potency, regardless of which method was used. Nevertheless, new analogues should be tested for differential effects on various cell types or metabolic processes. For example, among the analogues analyzed there are two (Glu^{A13}, Glu^{B10} and His^{B25}) that differ by a factor of almost two in free-fat cell activity relative to receptor binding (Table 4). These analogues need further testing in other systems.

Another aspect of differential activity of insulin analogues with regard to clinical use for treatment of diabetic patients is whether two different insulins, e.g., human insulin and one of the monomeric analogues, have additive effects when both are present. Mixtures of beef insulin, four insulin derivatives, and pork proinsulin have been investigated in the rat free—fat cell assay and found to deviate significantly from additivity (221). Secretion of normal human insulin (40%) and a mutant insulin (60%), in which Phe^{B24} or Phe^{B25} was substituted by Leu, has been reported in a diabetic patient (222).

The mutant insulin had only 10% receptor-binding affinity (human IM-9 lymphocytes). However, whereas the receptor-binding affinity of the mixture of mutant and human insulin was ~45%, the in vitro biological potency of the mixture was significantly reduced to 12% with regard to glucose transport or oxidation in rat adipocytes. This substantial antagonistic effect with respect to biopotency could explain the apparent insulin resistance of this patient, who was characterized as hyperinsulinemic and nonketotic.

Some of the monomeric analogues have also been tested for additive effects in mixtures with human insulin (223). With the mouse free–fat cell bioassay system, it was found that analogue Asp^{B9}, Glu^{B27} showed a statistically significant but relatively small antagonistic effect (~10% loss of activity), whereas three other analogues (Asp^{B10}; Asp^{B28}; and His^{A8}, His^{B4}, Glu^{B10}, His^{B27}) showed no significant deviations from additivity. It was concluded that the magnitude of the deviations from additivity seen with these analogues would not be of clinical significance.

Hypoglycemic effects (in vivo potency). In vivo animal bioassays have been used to assess the potency of insulin since insulin was first isolated. A series of successive international standards of insulin have been established to define the unit, and insulin manufacturers have been required to conduct in vivo assays of new insulin batches according to pharmacopoeial methods. Small species differences in relative potency of insulin in the rabbit assay and the use of single-species insulin preparations have led to the establishment of the current human, pork, and beef international standards (224,225). In past years, there has also been a trend toward replacing the laborious in vivo assays with quantitative high-performance liquid chromatography methods that can check the potency (strength) of the insulin preparation and its identity and purity (226).

Most analogues, including those with in vitro potency >100%, have in vivo potencies near 100% when assayed relative to the human international standard, according to the mouse blood glucose bioassay (227; Table 4). Some of the analogues with reduced in vitro potencies at least down to ~30% have retained nearly 100% in vivo potency. Similar results have been observed previously and explained by Jones et al. (208), who studied four insulin derivatives and pork proinsulin by successively increasing the intravenous infusion rate in dogs. They were able to express the in vivo potency based on the hypoglycemic response relative to either the dose or the steady-state molar concentration. The estimated in vivo potency relative to the circulating concentration was in close agreement with the in vitro potency determined in the free-fat cell and receptorbinding assays, which gave results in the range from \sim 2 to 30% relative to beef insulin. With in vivo potency expressed in the usual way, relative to the infused doses, much higher potencies ranging from 29 to 97% were obtained. Because the reduced in vivo potency based on the circulating concentration was due to the markedly increased steady-state molar concentration, the most likely explanation was that the analogues with low receptor binding and in vitro potency had a lower metabolic clearance rate. The resulting higher in vivo concentrations would then counterbalance the reduced in vitro or intrinsic potency. This explanation would also apply to the analogues, provided they also exhibit proportionality between plasma clearance and in vitro potency (Table 4). However, Jones et al. (208) did not show whether analogues with >100% in vitro potency are cleared more rapidly from the circulation than human insulin.

Clamp studies and clearance determinations. The euglycemic-hyperinsulinemic clamp technique can provide information about the clearance of insulin infused intravenously and the amounts of glucose required to balance the effect of the insulin (228). Ribel et al. (229,230) conducted clamp studies in pigs with human insulin, with the Asp^{B9}, Glu^{B27} and Asp^{B10} analogues infused at a constant rate of 6 pmol · min-1 · kg-1 for 2 h. The steady-state glucose infusion rates required to maintain euglycemia during the last 30 min of the 2-h infusion did not differ significantly and neither did the total amounts of glucose required during the 2-h infusion and 2-h postinfusion follow-up. These results confirm the similarity of the in vivo potencies of the two analogues and human insulin. However, the steadystate concentration of the insulins was different. The Asp^{B9}, Glu^{B27}-substituted analogue achieved a two to three times higher plasma concentration and the Asp^{B10} analogue a significantly reduced steady-state level compared with human insulin. When the metabolic clearance rates of the insulins were calculated, the mean values were \sim 20, 7, and 26 ml \cdot min⁻¹ \cdot kg⁻¹ for human insulin, Asp^{B9}, Glu^{B27}-, and Asp^{B10}-substituted analogue, respectively. Thus, these results are in complete agreement with the expected relationship between in vitro potency and metabolic clearance.

Another clamp study has been conducted in minipigs with the same dose of the same two analogues and human insulin but with a 4-h infusion period and simultaneous infusion of [3-3H]glucose to allow for calculation of rate of hepatic glucose output (R_3) and rate of glucose uptake (R_d) (231). Whereas the metabolic clearance rates determined in these pigs were two to three times higher than the values quoted above, the ranking between the values for human insulin and the two analogues was similar. Tracer data showed that both analogues and human insulin were equally efficient with respect to suppressing R_a and enhancing R_d . A clamp study in rats also confirmed the differences in clearance between human insulin and the same two analogues (Asp^{B9},Glu^{B27} and Asp^{B10}) (232). No differences were found with respect to R_a and R_d .

These clamp studies indicate that the similar in vivo potency relative to human insulin of the Asp^{B9},Glu^{B27} analogue (with low in vitro potency) and the Asp^{B10} analogue (with high in vitro potency) can be explained on the basis of the differences in metabolic clearance.

Thus, the analogue with low in vitro or intrinsic potency exerts full in vivo action, because it reaches higher concentration levels due to its reduced plasma clearance, which again presumably is a consequence of its reduced receptor-mediated elimination.

Metabolism and postreceptor effects. The distribution kinetics of certain insulin analogues has been studied in rats by whole-body scintigraphy, as described by Sodoyez et al. (233). A14-Tyr-¹²³l-labeled insulin analogues and human insulin were administered by intravenous bolus injection, and the counts over the liver, kidneys, heart, and background tissues were followed for 30 min (234). It was observed that low-affinity analogues, such as the Asp^{B9}, Glu^{B27} analogue, were predominantly taken up by the kidneys. The high-affinity analogues, such as Asp^{B10} and His^{A8}, His^{B4}, Glu^{B10}, His^{B27}, showed higher uptake by the peripheral tissues and less by the kidneys and liver, where the count tended to be lower than with human insulin and the Asp^{B28} analogue.

After binding of insulin to its receptor, the hormone-receptor complex is transported across the plasma membrane (internalized), and insulin is subsequently degraded by insulin proteases. These processes were studied in HepG2 at 4°C with A14-Tyr-¹²⁵I-labeled insulin analogues and human insulin, and it was found that the two high-affinity analogues mentioned above were internalized to a greater extent and showed less degradation after internalization than low-affinity analogues (V. Kruse, unpublished observations).

A major initial cleavage site in the degradation of insulin has been suggested to be the B16–B17 peptide bond (235). Degradation by insulin proteinase of the two B16-substituted analogues has been studied and shown to be decreased with the Glu^{B16}, Glu^{B27} analogue, whereas the analogue with a B16 Tyr-to-His replacement had unchanged susceptibility to cleavage by the enzyme compared with native insulin (M. Kobayashi, unpublished observations; Table 4).

In addition to the effects on glucose uptake and suppression of hepatic glucose production, the above-mentioned clamp studies also provided data on the entrapment of [3H]-2-deoxyglucose by different tissues (232). No significant differences were observed between human insulin and the two analogues in various muscle tissues of different fiber composition or in brown and white adipose tissue.

Another approach to study differential effects of insulin analogues on intermediary metabolism was used by Falholt et al. (236). Normal pigs were given twice-daily injections of 120 nmol s.c. (20 IU) human insulin or the analogues at mealtimes for 4 wk. Tissue samples of muscle, liver, and aorta were then analyzed for enzyme activities and metabolites. All three analogues studied (Asp^{B9},Glu^{B27}; Asp^{B10}; and Asp^{B28}) showed a significantly reduced triglyceride content in all three types of tissues compared with injection of either soluble human insulin or medium (saline). In keeping with this result, glucose-6-phosphate dehydrogenase activity was also significantly diminished in the same groups. In con-

trast, the glycogen content of muscle and liver was increased with the analogues relative to the increase found with the human insulin preparation. Parallel changes in glycogen synthase activity were also observed, but there were no consistent effects on the other enzymes studied, i.e., phosphofructokinase, hexokinase, and pyruvate kinase. It was concluded that the differential effects were probably due to the fast absorption of the analogue preparations, including the faster return to basal insulin levels or the faster and more pronounced hypoglycemia induced by the analogues. Whether a more rapid absorption of insulin can lead to preferential deposition of glycogen relative to lipids in the treatment of diabetic patients remains to be studied.

Summary. It is clear from the results obtained with various insulin analogues and derivatives that their in vivo biological potencies relative to human insulin cannot be accurately predicted from various in vitro assay systems. These in vitro potencies do, however, agree (usually within a factor of 2) regardless of the in vitro assay system used. Because binding to the insulin receptor is the initial event, it seems reasonable to assume that the similarity of the in vitro potencies reflect similarities between insulin-receptor binding sites from different species and cell types.

Most of the insulin analogues or derivatives that have retained a substantial part, i.e., at least 20% of the in vitro potency, possess nearly 100% in vivo potency. This can be explained by a dominating receptor-mediated clearance of these analogues, which leads to higher circulating concentration of the low-affinity analogue, which in turn counterbalances its reduced in vitro activity and results in nearly 100% in vivo potency. Similarly, a high-affinity analogue will be cleared more rapidly and give a lower in vivo concentration, resulting in approximately the same in vivo bioactivity as human insulin.

These results and the underlying concepts do not leave much hope for finding insulin analogues with differential effects on different organs or metabolic pathways (208). On the other hand, such possibilities should not be ruled out in advance because they could have important implications.

Although insulin receptors may not be able to discriminate qualitatively between different insulin analogues, it may still be possible to modify postreceptor events by changing the time course of insulin-receptor stimulation, as suggested by some of the experimental results (236). Such differential dynamic effects would be difficult to detect in steady-state in vitro or in vivo experiments.

IMMUNOLOGICAL ASPECTS

Various unwanted effects associated with insulin therapy are attributable to insulin-antibody production. These immunological side effects include lipoatrophy, local and systemic allergy, and immunological insulin resist-

ance (237–239). The introduction of highly purified monocomponent insulins in the 1970s and the availability of human insulin in the 1980s have led to a decreased prevalence and lower titers of insulin antibodies and, consequently, less severe immunological complications. However, circulating insulin antibodies are still seen in patients treated solely with homologous human insulin (84,240-244). The reasons formulations of human insulin administered subcutaneously induce antibody production in contrast to the endogenous hormone remain poorly understood. The residual immunogenicity of human insulin preparations has been assumed to be due to the chemical alterations of the molecule that develop during storage or after injection, especially when higher molecular transformation products are formed (245-249).

Immunogenicity (antibody formation). In addition to purity, species, and stability, factors influencing the immunogenicity of an insulin preparation include pH, physical state of the insulin, retarding agent, and the degree of protraction (length of stay in subcutis) (237,245,250–255). The influence of the latter factor is supported by the observation that subcutaneous continuous pump infusion gives rise to higher antibody levels than conventional injection of the same soluble insulin (256,257).

Association of insulin with its antibody is a reversible process dependent on the capacity and affinity of the antibody. Therefore, circulating antibodies sequester injected insulin within the vascular compartment, and this complex acts as an unphysiological buffer reservoir of insulin (258). This process has the effect of reducing the availability of administered insulin and damping oscillations in free-insulin levels, also resulting in an apparent increase in half-life of free insulin (81,238,259–272). Thus, the higher the titer of insulin antibodies, the slower the increase in plasma free-insulin concentration and, consequently, the greater the postprandial plasma glucose after a meal bolus injection of insulin.

The antibody-bound insulin reservoir also leads to a prolongation of action of injected soluble insulin, a delayed return to baseline free-insulin levels, and increased risk of delayed hypoglycemia (81,265,268,273). The higher the titer, the slower the plasma glucose recovery after hypoglycemia (265). The clinical relevance of low-affinity antibodies is still being debated, but it is evident that the presence of high-affinity antibodies with sufficient capacity to blunt and delay the free-insulin peaks is a disadvantage in the attempt to achieve normal physiological insulin profiles in relation to meals (84,262,274–277). Consequently, when near normoglycemia is the goal, the presence of insulin antibodies is undesirable, and their plasma concentration should be kept below a clinically significant level. This can only be achieved if insulin preparations of low immunogenicity are used for treatment.

In the past, a rabbit model was developed for evaluating the influence of varying levels of impurities in insulin (32,278). With this model, conventional insulin

crystallized five times, and highly purified beef and pork insulins did not result in antibody formation when administered in neutral solution (32,279). Only when administered at high dose levels and incorporated into an oil emulsion (Freund's incomplete adjuvant), primarily having the effect of prolonging the stay in subcutis and thereby the stimulus to the immune system, was significant antibody formation seen (32,278). A similar difference in response between insulin in solution and as a protracted preparation was observed in subjects injected with conventional beef insulin. The protracted preparation resulted in high-antibody titers, whereas the short-acting beef preparation gave a low response comparable to that of pork short-acting insulin (250,252, 275). Because of the lack of a response without adjuvant, it is questionable whether the rabbit model is suitable for predicting the clinical immune response to subcutaneously administered short-acting novel insulins. It may, however, be useful to identify and reject highly immunogenic insulin analogues for screening purposes.

Realizing the shortcomings of the rabbit model, an alternative and clinically more relevant in vitro method that uses human lymphocytes has recently been developed for the assessment of immunogenicity of novel insulins in humans (280). Lymphocytes from healthy subjects are primed with insulin before a secondary challenge with the same insulin in conjunction with autologous antigen-presenting cells. The response of this assay to heterologous insulins is in keeping with the ranking order observed for antibody production in the clinic (280). The immunogenicity of several of the monomeric analogues has been tested in this way with lymphocytes from five donors previously shown to respond positively to animal insulins. Only analogues with a substitution within the A-chain loop (A8-A10) elicited a substantially increased response similar to that of beef insulin. Analogues with substitutions at the COOH-terminal end of the B chain gave intermediate responses, whereas substitutions in B9 or B10 resulted in the lowest responses comparable to that of pork or even human insulin (B.A. Parkar, W.G. Reeves, unpublished observations).

The presence of insulin in monomer form instead of aggregated form is likely to result in less antibody production, and the shortened stay in subcutis will probably have the same effect (240,281,282). However, only long-term clinical trials will be able to confirm this expectation and establish whether monomeric insulin analogues are sufficiently low in their immunogenic potential for general clinical use.

Antigenicity (binding to antibodies). Insulin resistance due to the presence of high titers of insulin antibodies is a rare complication of insulin treatment. The management of immunological resistance involves changing therapy to insulins with reduced affinity to the circulating antibodies (239,283). Sulfated insulin combines less avidly with antibodies induced by beef and pork insulin and has been used successfully for treatment for resistant patients (170,284–287; Table 3). Several of the ana-

logues described herein share with sulfated insulin the presence of negatively charged residues in positions B9 and B27 and have the potential for reduced binding to antibodies against native insulins (Table 4). Indeed, the Asp^{B9}, Glu^{B27} analogue has been shown to have reduced affinity to such preformed antibodies (I. Jensen, unpublished observations); therefore, this or a similar analogue might be a possible future substitute for inhomogeneous sulfated insulin in the treatment of immunological insulin resistance.

PROOF OF CONCEPT AND ELUCIDATION OF ABSORPTION MECHANISMS

Provided active transport of insulin in subcutaneous tissue can be excluded, the absorption of soluble insulin is determined solely by factors influencing diffusive transport. These include the insulin-concentration gradient, total area and permeability of the absorbing capillary membrane, diffusion capacity of the injected insulin, and the distance for diffusion. Of these factors, diffusion capacity is governed by the form and volume of the diffusing substance (diffusion coefficient with free diffusion) and by the steric hindrance of free diffusion. Therefore, the association state of insulin together with the tendency of the oligomeric units to dissociate when diluted during transport are expected to be of paramount importance for the diffusion capacity (see CREATION OF INSULINS WITH REDUCED SELF-ASSOCIATION).

To assess the importance of diffusion capacity relative to the other factors mentioned and to evaluate the influence of insulin association state on subcutaneous absorption of soluble insulin, a series of in vitro and in vivo experiments have been undertaken (189,288,289). **Chromatographic investigations.** The different native insulins used in therapy are all hexameric when examined by osmometry but may differ in their ability to remain in the hexameric state when the concentration of insulin is lowered. The dilution of the injected depot occurring in the subcutis during absorption can be imitated in SEC experiments in which differences with respect to insulin-dissociation behavior are revealed as differences in time of elution and elution profile of the insulin. Examples of such experiments are shown in Fig. 6 (183,189). Whereas an essentially monomeric analogue elutes as a symmetrical peak late in the chromatogram, human insulin elutes earlier as associated molecules dependent on the Zn2+ content. A difference can be observed between the elution profiles of 2 Zn²⁺ pork and human insulin (Fig. 6, A and B). Human insulin dissociates more than pork insulin during the passage of the column, and this difference is even more pronounced when the insulins (1 ml) are applied at a lower concentration (U-50 ~0.3 mM)

Monomeric sulfated insulin elutes relatively early at the approximate site of a dimer as a symmetrical peak, indicating that no further dissociation is taking place (Fig. 6D). A possible explanation for this occurrence is that the bulky sulfate groups increase the volume of the molecule either directly or by causing an unfolding of the monomer as also indicated by the low in vivo potency (Table 3).

Animal studies. To assess whether the association state (or the tendency to dissociation of the associated insulin molecules) represents a rate-limiting step in the entire process of absorption of insulin from the subcutaneous injection site, a series of analogues with varying association properties and different animal insulins (with and without metal-induced stabilization of the hexameric structure) was investigated in pig absorption experiments (3,189). The mean association state of the insulin analogues was deduced from osmometry, and the stability of the different native hexameric insulins in relation to dilution was ranked according to their behavior in SEC experiments (see CREATION OF INSULINS WITH REDUCED SELF-ASSOCIATION).

The disappearance of the different insulins (containing A14-mono- 125 l-insulin tracer) after subcutaneous injection was determined by local external γ -counting (101,148). The experiments were conducted with two standards, the monomeric Asp^{B9},Glu^{B27} analogue and normal hexameric 2 Zn²⁺ human insulin, in a crossover design with at least 6 pigs/study. The T_{50} values of the disappearance of radioactivity from the site of injection were calculated relative to 2 Zn²⁺ human insulin with data from both standards to adjust for systematic variations between experiments.

The results of these studies are summarized in Fig. 7. The relative T_{50} values of the analogues and human insulin with and without $\mathrm{Zn^{2+}}$ are strongly correlated to the degree of insulin self-association (r=0.96, P<0.001), i.e., an inverse relationship between subcutaneous absorption rate and the average size of the insulin units. In the upper-right section in Fig. 7, a similar close rank correlation between T_{50} and the dissociation tendency of native $\mathrm{Zn^{2+}}$ and $\mathrm{Co^{2+}}$ insulins during SEC experiments is seen. It can also be observed that the non-dissociating cobalt (CoIII) insulin hexamer (290) can actually be absorbed from the subcutis but at a rate three to four times slower than that of monomeric insulins.

Similar investigations on the monomeric insulin derivatives despentapeptide B26–B30 insulin and sulfated insulin have revealed relative T_{50} values of 81 and 82%, respectively, which do not fit into the relationship shown in Fig. 7 (288; Table 3). These deviations are probably explained by sulfated insulin being more voluminous than a normally folded monomer and by despentapeptide forming precipitates at the injection site (see above and INSULIN STRUCTURE). The latter explanation is supported by the fact that despentapeptide in the initial phase of subcutaneous absorption disappears relatively fast from the injection site, whereas the rate slows down thereafter (U. Ribel, unpublished observations).

The pig studies have confirmed the slightly faster absorption of human relative to pork soluble insulin repeatedly seen in clinical studies (91–96,99; Fig. 7). **Discussion and conclusions.** Mathematical modeling

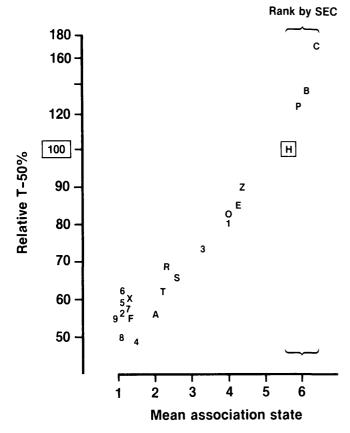


FIG. 7. Correlation between T_{50} disappearance from injection site in pig studies (for further details see text) and mean association state at 1 mM of various insulins. Association state was deduced from osmometry (see CREATION OF INSULINS WITH REDUCED SELF-ASSOCIATION), and in case of hexameric insulins, tendency to dissociation on dilution was assessed by size-exclusion chromatography (see PROOF OF CONCEPT AND ELUCIDATION OF ABSORPTION MECHANISMS). Each figure and letter in diagram represents mean results for 1 insulin or insulin analogue. B, beef; P, pork 2 Zn²⁺ insulin; C, cobalt (Colli) human insulin; for other codes see Table 4. Note that $T_{50\%} > 100$ is log scale.

techniques that use various approaches to quantitatively study subcutaneous insulin absorption have been applied by several investigators (80,138,144,147,148, 291–297).

The use of theoretical models for studying the absorption of insulin is dependent on many assumptions and approximations. Based on the hypothesis that injected soluble insulin is present in the subcutaneous tissue primarily as two oligomeric forms (hexamer and dimer) and that only dimers can penetrate the capillary membrane, Mosekilde et al. (144) constructed a model that was able to explain the existence of an initial slow absorption phase (lag phase) and the variation of the absorption rate with insulin concentration and injected volume. Their model describes how diffusion and absorption gradually reduce insulin concentration in the subcutaneous depot, whereby the equilibrium between hexamers and dimers in accordance with the law of

mass action is shifted toward the dimer. These assumptions are in keeping with an earlier theory by Binder (147), who assumed that insulin is absorbed in no more than a dimeric state, and supported by later studies by Ribel et al. (148). In contrast, Hildebrandt et al. (135), based on calculations of capillary diffusion capacity of the injected insulin, suggested that insulin is transported to the bloodstream in a polymeric form.

The above studies demonstrate a major influence of the insulin-association state on the rate of absorption of subcutaneously injected soluble insulin. This factor seems to be the main determinant in the influence of insulin species, insulin concentration, and injected volume, the latter also relating to the effect of using jet injection or sprinkler needle (relatively faster dilution, the smaller or more dispersed the volume injected). Also, the effect of increased temperature and massage (faster dispersion and dilution of the insulin depot) can be explained by increased or faster dissociation of hexameric insulin.

The other important factor, blood flow (recruitment of available capillaries), functions by influencing the diffusion distance and the insulin concentration gradient. Because the rate of transport by linear diffusion is proportional to the concentration gradient, an increase in blood flow will also contribute to the velocity by which associated insulin is diluted and dissociated after injection. This interaction between dominating factors that influence the rate of subcutaneous absorption of insulin emphasizes the complexity of the entire absorption process.

The initial delay (3–4 h) in reaching maximal absorption rate (lag phase), i.e., the time until the absorption follows first-order kinetics, can now be explained by the time necessary for sufficient dilution and the resulting dissociation of hexameric insulin into smaller units (101). Because of the low concentration required for further dissociation into monomers, the fraction of soluble native insulin absorbed in monomeric form is small (Fig. 3). The monomeric insulin analogues follow a monoexponential disappearance course from the time of injection (see CLINICAL STUDIES).

The observation that hexamers can actually be absorbed from the subcutis indicates that soluble insulin is also partly absorbed while in its hexameric state (289; Fig. 7). Because the rate of free diffusion is inversely related to the radius of the diffusing unit, the hexamer with approximately twice the diameter of the monomer would, provided unrestricted diffusion, be expected to be absorbed at half the rate of that of the monomer. However, the difference in the rate of absorption is three-to fourfold (Fig. 7). Consequently, the hexamer must, in addition to its slower free diffusion, be sterically more hindered than the insulin monomer during the diffusional transport in the subcutis and/or during its passage through the capillary membrane.

The slightly faster subcutaneous absorption of human soluble insulin relative to the animal insulins can now be explained by a less stable hexameric structure of human insulin as reflected by the greater tendency to dissociation with decreasing concentration of insulin. This property is basically due to the more hydrophilic amino acid in position B30 (Thr instead of Ala), resulting in a changed solvent structure in the B28–B30 region and alterations in the intermolecular contacts (298). These changes apparently have a weakening effect on hexamer stability. Therefore, the faster absorption of human insulin is probably not caused by the increased hydrophilicity but rather is due to the effect the amino acid change in position B30 has on the strength by which the dimers are held together within the hexamer.

From these animal and chromatographic studies, it can be concluded:

- The size of the insulin unit (association state) and the ease by which assembled molecules dissociate play an important role in determining the rate of absorption after subcutaneous injection of soluble insulin.
- 2. The rate of absorption is inversely correlated to the degree of insulin self-association and the ease by which associated insulin dissociates.
- 3. Two semisynthetic monomeric insulin derivatives (sulfated insulin and despentapeptide B26–B30 insulin) deviate from this relationship, possibly because of unfolding to a more voluminous molecule and precipitation at the injection site, respectively.
- 4. Monomeric insulins are absorbed from the subcutis three to four times faster than a nondissociating hexamer, indicating that steric restriction of transport in the tissue and/or through the capillary membrane is also a limiting factor in the absorption process.
- 5. The slightly faster absorption of human insulin compared with pork soluble insulin after subcutaneous injection is due to a small difference in the tendency to dissociation of their respective hexamers.
- 6. The lag phase in absorption of soluble insulin; the effect of insulin concentration, injected volume, and temperature; and the influence of massage on the absorption process are now easily understood in the light of these results.
- Monomeric insulins are promising candidates for quicker delivery of insulin by the subcutaneous route and, consequently, for minimizing postprandial glucose increase and reducing between-meal hypoglycemia in IDDM subjects.

CLINICAL STUDIES

Clinical evaluation of the human insulin analogues intended for meal-related insulin requirements began in 1987 after the demonstration in pigs that the subcutaneously administered disubstituted monomeric analogue Asp^{B9}, Glu^{B27} was absorbed faster with an earlier effect on plasma glucose than the reference soluble human insulin (3). A series of single-dose studies was con-

ducted in healthy subjects with subcutaneous administration of ¹²⁵I-labeled human insulin (Actrapid) and three candidate insulin analogues Asp^{B9}, Glu^{B27}; Asp^{B10}; and Asp^{B28}, followed by studies in insulin-treated diabetic subjects to evaluate the influence of the insulins on post-prandial glycemic excursions after ingestion of a standardized test meal (299–303; S.K., F.M. Creagh, J.R. Peters, J.B., A.V., D.R.O., unpublished observations). All studies were approved by the local ethical committee and performed in accordance with the Declaration of Helsinki.

Additional clinical studies have been undertaken elsewhere involving both healthy subjects and IDDM patients (304,305; S. Jørgensen, G. Petranyi, unpublished observations).

Studies in healthy subjects. The data presented from our own studies are from seven healthy male volunteers not receiving concomitant medication who received, in the course of a series of studies over 6 mo, the following four test preparations in the same formulation: soluble human insulin and human insulin analogues Asp^{B9}, Glu^{B27}; Asp^{B10}; and Asp^{B28} (S.K., J.B., A. Burch, A.V., D.R.O., unpublished observations).

Each study was performed with subjects fasted overnight, resting in a supine position during the study in a constant-temperature environment (22°C); smoking was not permitted. The bolus subcutaneous injections were sited in the anterior abdominal wall midway between the umbilicus and the anterosuperior iliac spine. The residual radioactivity at the injection sites was determined by external counting, with the detector consisting of a thallium-activated sodium iodide crystal and photomultiplier tube connected to a single-channel analyzer. The scintillation detector was attached to a cylindrical lead collimator and fixed 50 mm from the skin surface. Residual radioactivity was measured continuously for the first 2 h after injection of the 1251-insulin preparations and thereafter during 5-min intervals corresponding to blood sampling times. Counts were corrected for background and the results expressed as percentage of initial values. Frequent mixed venous blood samples were obtained throughout the 6-h study for the determination of plasma glucose, insulin, and insulinanalogue concentrations. Immunoreactive insulin-analogue analyses were performed with selected antibodies and the respective insulin analogues for the standard curves.

All preparations were well tolerated by all subjects, with no clinical evidence of local or systemic adverse events. Figure 8 illustrates the residual radioactivity at the injection site and the plasma insulin, insulin analogue, and glucose levels after subcutaneous administration of the four test preparations at a dose of 0.6 nmol/kg (0.1 U/kg).

The disappearance of the three insulin analogues from the subcutis, as depicted by the residual radioactivity at the site of injection, was faster than that of the reference soluble human insulin. The calculated times to T_{50} residual radioactivity for human insulin and insulin ana-

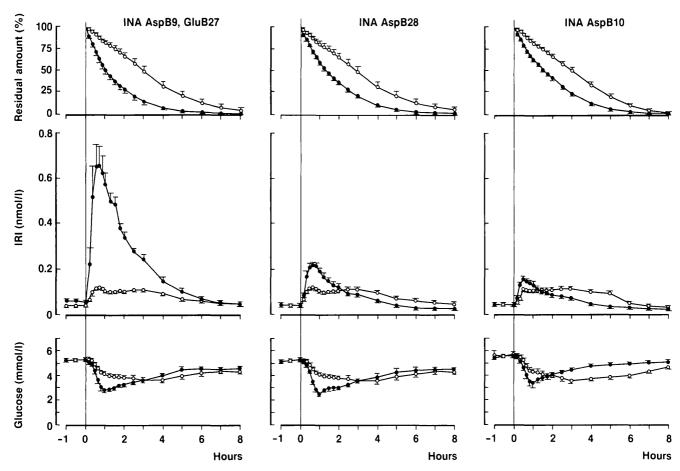


FIG. 8. Mean \pm SE residual radioactivity at injection site and plasma immunoreactive insulin (IRI), insulin analogue (INA), and glucose concentrations after subcutaneous injection of 0.6 nmol/kg of soluble human insulin (\bigcirc) or insulin analogue (\bullet) into healthy subjects (n=7). For further details see text.

logues Asp⁸⁹, Glu⁸²⁷; Asp⁸¹⁰; and Asp⁸²⁸ were ~180, 60, 90, and 80 min, respectively. Consequently, a more rapid rise in plasma concentrations of the three analogues is observed compared with the reference human insulin. The differences between the plasma insulin profiles of the analogues also reflect the influence of their respective metabolic clearance rates (see BIOLOGICAL AND PHARMACOLOGICAL PROPERTIES). Each of the three insulin analogues resulted in an earlier and more pronounced hypoglycemic response, reaching a nadir at 1 h after administration, followed by a quicker return toward preinjection levels. This contrasts with the much slower fall in plasma glucose after soluble human insulin, with a less well defined nadir between 3 and 4 h and a slower return toward fasting levels.

The percentage of the test preparations of insulin absorbed and the corresponding hypoglycemic responses for the first 3 h and last 5 h of the study are shown in Fig. 9. Approximately 80% of the analogues are absorbed during the first period, in contrast to only 50% of human insulin. From 3 to 8 h, the percentage of human insulin absorbed is two to three times higher than that of the analogues. The cumulative hypoglycemic effects (*lower panel*) are also higher for the analogues

during the first 3 h, and a more prolonged effect (3–8 h) can be observed with human insulin.

From the above disappearance studies, a strong relationship between the association state of insulin and the rate of disappearance from the subcutaneous injection site is observed, confirming in humans the results found in pigs (189,288,289,300; S.K., J.B., A. Burch, K.H. Jorgensen, A.V., D.R.O., unpublished observations; Fig. 7).

The observations of Heineman et al. (306), who used the euglycemic clamp technique to compare subcutaneously administered human insulin analogues Asp^{B9}, Glu^{B27} and Asp^{B10} in healthy volunteers given 72 nmol (~12 U) of each indicate that the glucose infusion rates were higher with the analogues from as early as 20–30 min postinjection. An earlier and faster decrease in the glucose infusion rate was also observed with the analogues between 5 and 6 h after administration. These findings confirm the earlier onset and shorter duration of action of the insulin analogues after subcutaneous injection in healthy subjects.

Intravenous infusion over 90 min at two dose levels (1 and 2 pmol·kg⁻¹·min⁻¹) of human insulin and the analogues Asp^{B9}, Glu^{B27} and Asp^{B10} in 10 healthy subjects

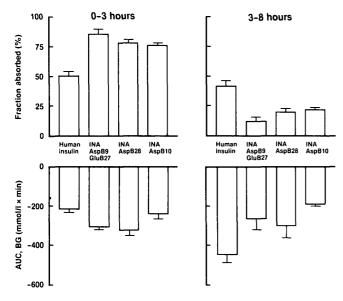


FIG. 9. Comparison of absorbed percentages (means ± SE) of human insulin and insulin analogues (INAs) Asp⁸⁹, Glu⁸²⁷; Asp⁸²⁸; and Asp⁸¹⁰ during first 3 h and last 5 h of study in healthy subjects (*upper panels*; see Fig. 8). *Lower panels*, areas under the curve (AUC; in negative values to indicate hypoglycemic effect) between blood glucose (BG) curves after injection and initial glucose levels (means ± SE).

gave a similar fall in blood glucose levels (304,305). The steady-state plasma levels at the 2-pmol \cdot kg⁻¹ · min⁻¹ dose level for human insulin and insulin analogues Asp^{B9}, Glu^{B27} and Asp^{B10} were ~110, 160, and 80 pM, respectively, reflecting their different metabolic clearance rates (corrected for C-peptide) of 20, 13, and 26 ml \cdot kg⁻¹ · min⁻¹, respectively.

It has been argued that substantial degradation of insulin takes place at the subcutaneous injection site (57). If local enzymatic degradation was a major problem, it would be expected that the monomeric insulin would be even more susceptible to such degradation than the hexamers in current soluble insulin. A comparison of the measured appearance in the blood (corrected for endogenous insulin secretion) and appearance calculated from the disappearance of radioactive-labeled insulin analogue from the injection site (based on the data for insulin analogue Asp^{B9}, Glu^{B27} from Fig. 8) is shown in Fig. 10. Assuming that elimination from plasma is first order, the predicted appearance curve agrees with the actual measured values, and a corresponding agreement has also been found for human insulin (P. Hougaard, unpublished observations). Therefore, the use of ¹²⁵l-insulin represents a reliable comparative method to study absorption kinetics of the rapid-acting analogues.

The initial lag phase in the absorption of soluble human insulin is evident also in these studies when the disappearance data are depicted on a log scale (Fig. 11; see CLINICAL OBSERVATIONS and PROOF OF CONCEPT AND ELUCIDATION OF ABSORPTION MECHANISMS). In contrast, the monomeric insulin analogue Asp^{B9}, Glu^{B27} does not

show such a delay in reaching maximal rate of disappearance. It follows a monoexponential course during the entire absorption process, and the slope of the disappearance curve, i.e., rate of disappearance, is much steeper than that of the initial part of the disappearance curve for human insulin. The essentially dimeric insulin analogue Asp⁸¹⁰ initially (0-2 h) disappears at a rate similar to that of human insulin in its intermediate phase of absorption (2-4 h) (Fig. 11; Table 6). Later (3-8 h), insulin analogue Asp^{B10} disappears at a rate close to that of the monomeric analogue (insulin analogue Asp⁸⁹, Glu⁸²⁷). The last 20% of human insulin (5–8 h) also disappears with a rate near to that of monomeric insulin. Assuming that the initial disappearance rate of human insulin represents the rate of absorption of hexameric insulin, it can be deduced that a monomer of insulin is absorbed 3.3 times faster than hexameric insulin (Table 6). This value is in agreement with the ratio of \sim 3.2 between the T_{50} values for the nondissociating Co²⁺ hexamer and the monomeric insulins in pig studies (Fig. 7).

It is now evident that the long T_{50} for the absorption process, based on disappearance studies, and the deviation from a monoexponential disappearance curve are not, as alleged by Berger et al. (57), due to the indirect method of measuring insulin absorption from the subcutaneous tissue. These phenomena can be explained by the associated nature of the native insulin molecule in pharmaceutical formulations and the dissociation into smaller units occurring during the absorption process.

For soluble human insulin, the duration of the lag phase (i.e., time to dissociation of hexameric insulin) varies with volume and concentration and would also be expected to vary with the region and depth of injection and with the blood flow and all its related factors (Table 2; CLINICAL OBSERVATIONS and PROOF OF CONCEPT

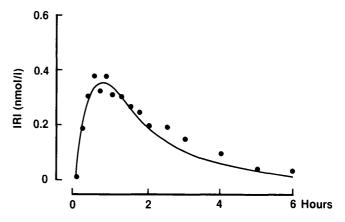


FIG. 10. Comparison of measured appearance (♠) of immunoreactive insulin (IRI) in blood (corrected for endogenous insulin secretion based on C-peptide analyses) and appearance calculated from measurement of residual radioactivity at injection site (solid line) after subcutaneous injection of monomeric insulin analogue Asp⁸⁹,Glu⁸²⁷ 0.3 nmol/kg into healthy subjects (n = 7).

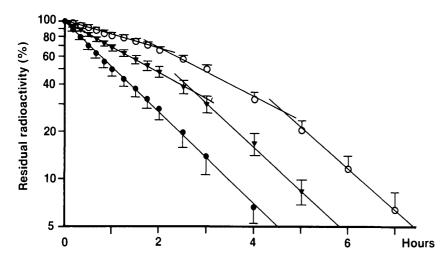


FIG. 11. Replot of disappearance curves of human insulin (○), insulin analogues Asp⁸⁹, Glu⁸²⁷ (●), and Asp⁸¹⁰ (▼) in logarithmic scale (means ± SE; see Fig. 8). Straight line segments were calculated by linear regression analysis with data from relevant time intervals (see Table 6 for listing of relative rates of absorption corresponding to slopes of lines).

AND ELUCIDATION OF ABSORPTION MECHANISMS). These relationships, contributing to the day-to-day variation in insulin absorption, are likely to be of less importance when the lag phase is reduced or eliminated. In agreement with this theory, the study by Vora et al. (299) indicates a lower dose-related variation in the absorption rate of the monomeric (Asp^{B9}, Glu^{B27}) analogue compared with soluble human insulin.

Studies in diabetic subjects. The availability of insulin preparations with faster absorption rates from the subcutis and a shorter duration of action than currently available insulins offers many potential advantages. The delivery of early prandial insulin and avoidance of prolonged hyperinsulinemia with the monomeric insulin analogues may limit excessive postprandial glycemic excursions and the predisposition to late hypoglycemia incumbent with currently available short-acting insulins. Another benefit would be the possibility of administration just before the meal.

In an attempt to examine the first of these hypotheses, a pilot study was conducted with the disubstituted insulin analogue Asp^{B9}, Glu^{B27} in a few insulin-treated diabetic patients (302,303). Neutral soluble human insulin (Actrapid) and the insulin analogue were each given by subcutaneous injection into the anterior abdominal wall in six male insulin-treated patients at a dose level of 60 nmol (10 U) immediately before a standard test

TABLE 6
Rates of subcutaneous absorption (%/h)

, , , , , , , , , , , , , , , , , , , ,	Human Rate insulin	Insulin analogues	
Rate		Asp ^{B10}	Asp ^{B9} ,Glu ^{B27}
Initial (0–2 h) Intermediate (2–4 h) Final (5–8 h)	20.1 35.9 60.5	36.7 63.4 (3–8 h)	66.2 (0–8 h)

Rates were calculated as slope of regression lines for logarithms of residual amount at injection site versus time with all measurements in indicated time interval (Fig. 11).

breakfast. All patients were previously treated with a basal (Ultratard once daily before bed) bolus (Actrapid 3 times daily before meals) insulin regimen. Basal insulin was discontinued 72 h before the study, with glycemic control maintained by frequent soluble insulin injections as required. An intravenous infusion of insulin was commenced (0.12 mU \cdot k⁻¹ \cdot min⁻¹) on the last evening and continued up to 30 min before the test meal. The pre- and postprandial plasma glucose, freeinsulin, and insulin-analogue concentrations after bolus subcutaneous administration are shown in Fig. 12. Plasma insulin and analogue profiles agree with those previously seen for the same dose of the two preparations in healthy subjects (299). Incremental postmeal glucose levels were lower with insulin analogue Asp^{B9}, Glu^{B27} from 1 h onward, and the cumulative area under the incremental glucose curve for the 4-h study was 45% lower with the analogue (P < 0.01).

A second study was performed with the reference human insulin administered 30 min before the test breakfast, and the three insulin analogues Asp⁸⁹, Glu⁸²⁷; Asp⁸¹⁰; and Asp^{B28} individually injected immediately before food on separate study days in six IDDM subjects usually treated with a basal bolus regimen (301; unpublished observations). The same protocol as above was used, with the exception that the insulin infusion commenced the previous evening was continued throughout the study. Plasma glucose profiles are shown in Fig. 13. All three insulin analogues injected immediately before the meal achieved glycemic control comparable to that of soluble human insulin administered 30 min earlier. The reduction in the incremental area under the postprandial glucose curve compared with that of human insulin for the 4-h study for insulin analogues Asp^{B9}, Glu^{B27}; Asp^{B10}; and Asp^{B28} was ~30, 20, and 45%. The differences in glucose concentrations between analogues and human insulin were most pronounced when considering the 1.5- to 4-h postprandial period (Fig. 14). Although mean increments with the analogues were only approximately half that of human insulin, the difference did not reach statistical significance due to the few patients tested.

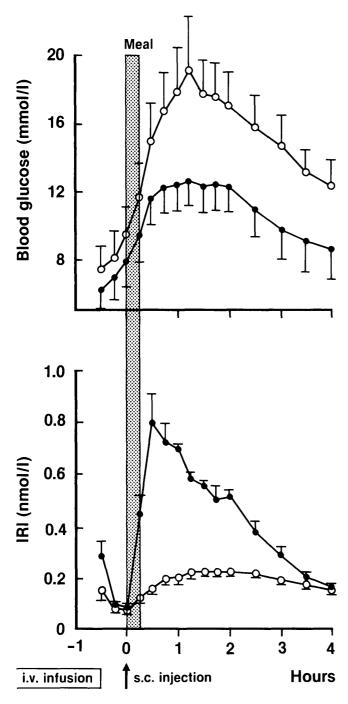


FIG. 12. Mean \pm SE plasma glucose and plasma free-insulin (IRI) or insulin analogue levels after test meal (500 kcal) and subcutaneous injection of soluble human insulin (\odot) or insulin analogue Asp⁸⁹, Glu⁸²⁷ (\bullet) in equimolar doses (10 U) into insulin-treated patients (n = 6) at 0 min.

Similar postmeal glucose profiles with human insulin given 30 min before mealtimes and the insulin analogue Asp^{B10} injected immediately before the meal were observed by Jørgensen et al. (unpublished observations).

Additional kinetic and metabolic studies in IDDM subjects with the glucose-clamp technique and intra-

venously administered human insulin analogues Asp^{B9}, Glu^{B27} and Asp^{B10} (G. Petranyi, unpublished observations) confirm the bioequivalence of these preparations as observed earlier in animals (229,230) and humans (304,305).

These preliminary findings demonstrate that, in both healthy subjects and diabetic patients after subcutaneous injection, the three analogues achieve a similar hypoglycemic effect, being faster in onset and shorter lived than soluble human insulin.

Clinical implications. There is compelling evidence that there is a relationship between diabetic complications and the degree of metabolic derangement that exists in diabetes mellitus (36-38,307-309). Several studies have demonstrated that improvement in glycemic control can result in morphological and functional improvements, emphasizing the need to strive for the best possible metabolic control in the insulin-requiring diabetic patient (39-42,78). Due to their inherent pharmacokinetic properties, currently available insulin preparations given subcutaneously can at best only achieve near normoglycemia in a few patients. Currently, meal-related soluble insulin needs to be injected 0.5-1 h premeal, attempting to supply some insulin during the early prandial phase to minimize the postmeal glycemic excursion. Consideration must also be given to regional differences in the rate of insulin absorption, which is known to be slower from the thigh than from the abdomen. Despite using the abdomen, prolonged hyperinsulinemia predisposes the patient to delayed postprandial hypoglycemia.

The preliminary clinical experience summarized above confirms that monomeric insulin analogues administered by subcutaneous injection immediately before the meal are at least as good as soluble human insulin administered 30 min earlier. Therefore, they are promising candidates for limiting both excessive postprandial glucose concentrations and delayed hypoglycemia. A greater benefit in glycemic control may also be expected from injecting the analogues 10-15 min before a meal. Less reliance on patient compliance in relation to injection times must also be an advantage. Hyperinsulinemia can subject patients to both acute (hypoglycemia) and, possibly, long-term atherosclerotic risks (310-317). Thus, when insulin is required, the monomeric analogues are more suitable also for use in NIDDM subjects compared with soluble human insulin. Observations from clinical studies of NIDDM and IDDM subjects could be interpreted to suggest that they might benefit from insulin effects that appeared and disappeared more rapidly in connection with meals (318,319). This could represent important clinical applications for monomeric insulin analogues.

Therefore, the development of these novel insulins represents a major step in the evolution of insulin preparations to subserve meal-related insulin requirements. However, a final candidate for large-scale clinical studies must satisfy, in addition to efficacy, both safety and stability requirements.

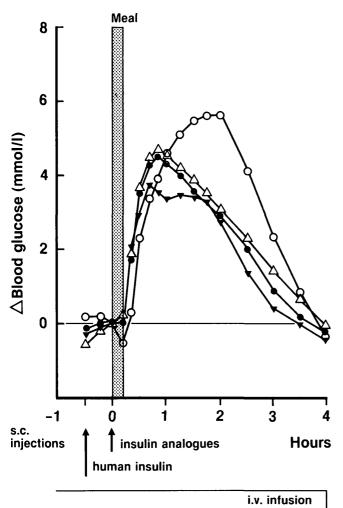


FIG. 13. Mean incremental plasma glucose concentrations during meal tolerance test (500 kcal) in insulindependent diabetic patients (n=6) receiving constant insulin infusion (0.12 mU · min⁻¹ · kg⁻¹ human soluble insulin, Actrapid) and given insulin analogues Asp⁸⁹, Glu⁸²⁷ (\bullet); Asp⁸²⁸ (\blacktriangledown ; n=5); and Asp⁸¹⁰ (\triangle) immediately before test meal and human soluble insulin (\bigcirc) 30 min earlier, all by bolus subcutaneous injection into anterior abdominal wall.

SUMMARY AND FURTHER PROSPECTS AND DIRECTIONS

mportant advances in the understanding of physiological effects, chemistry, kinetics, and action of insulin have emerged since the hormone was first isolated in the early 1920s. However, major deficiencies of today's therapeutic regimens are still evident. The physiological replacement of insulin remains an elusive goal, although the usefulness and perspectives of the most recent milestone in the development of insulin for clinical use, the genetically engineered insulin analogues, are yet to be established (54).

Glucose intolerance and frank diabetes mellitus are recognized risk factors for cardiovascular disease, especially coronary heart disease, which claims more than half of the deaths in diabetic patients in westernized cultures (320–322). Common among the risk factors for coronary artery disease in individuals with or without glucose intolerance are insulin resistance and hyperinsulinemia and their metabolic and morphological consequences (317,323). In the pursuit of normoglycemia without coexisting hyperinsulinemia, the requirements of insulin therapy are exacting and the goal is rarely, if ever, reached with currently available insulin preparations and/or methods of delivery (72). The avoidance of microvascular complications of diabetes also requires the achievement of good metabolic control (36).

The early results with the new insulin analogues for meal-related insulin requirements in IDDM patients are encouraging, but more extensive studies are needed to better evaluate their full clinical potential. The rapid resorption from the subcutis offers considerable advantages over current soluble insulins, provided chronic treatment does not induce the formation of antibodies capable of obtunding the early availability or serving as an unphysiological reservoir of insulin in the circulation. One benefit of such insulin analogues for the diabetic patient is the possibility of administration much nearer to mealtimes, contrasting with the current recommendation of injecting soluble insulin 0.5-1 h preprandially. The potential for minimizing the risk of delayed hypoglycemia with such insulin analogues will also require careful evaluation. Moreover, the full impact of these novel short-acting insulins for IDDM subjects, who

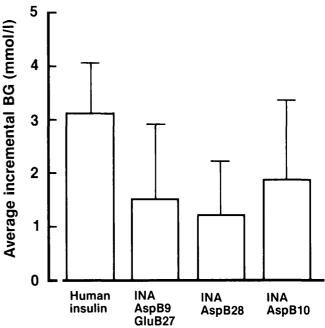


FIG. 14. Average incremental blood glucose (BG) from 1.5 to 4 h after meal tests in diabetic patients given subcutaneous injections of human insulin (12 U) 30 min before meal or equimolar doses of 3 different insulin analogues (INAs) immediately before meal (means ± SE; see Fig. 13).

also need basal insulin supplementation with currently available intermediate- or long-acting insulin preparations, will require long-term clinical evaluation. The future availability of new insulins for the delivery of a more physiological basal insulin supply would be complementary to the aim of achieving normoglycemia without hyperinsulinemia (181,182).

In the case of NIDDM, the new insulin analogues may be used to supply prandial insulin requirements, especially in the nonobese insulinopenic patient. The opportunity to overcome the deficit in the early insulinsecretory response to food in NIDDM subjects with the quickly absorbed insulin analogues is promising and requires careful evaluation.

Current absorption studies in animals and the clinical investigations in humans have contributed significantly to the understanding of subcutaneous insulin absorption. Several of the hitherto puzzling phenomena in relation to the absorption process can now be explained by the associated nature of native insulin in pharmaceutical formulation and the tendency of such assembled insulin molecules to dissociate on dilution during the absorption process. Availability of the monomeric insulins for clinical use will make it possible to clarify and quantify more precisely the role of the many factors influencing subcutaneous absorption of insulin and thereby contribute further to the elucidation of the exact mechanisms of subcutaneous absorption of insulin.

In addition to the prospects of optimizing parenteral insulin therapy, the new insulins with reduced tendency to association might also have important potential for improving delivery of insulin by alternative routes of administration, e.g., nasal and transdermal delivery. However, preliminary investigations have shown that the absorption of monomeric insulins through the nasal mucosa is absent or insufficient when administered without the use of absorption-promoting adjuvant to rats (J.L. Bolaffi, G. Grodsky, unpublished observations) or rabbits (A.R. Sørensen, unpublished observations). In contrast, transdermal transport by iontophoresis through mouse skin seems to be enhanced with monomeric insulins compared with human insulin (P.G. Green, R. Guy, unpublished observations).

Experimentally, the monomeric insulins, in addition to what has already been mentioned, are likely to have a great impact on elucidating the structure of insulin in solution by NMR studies. Future studies aimed at increasing understanding of the structure-function relationship of the hormone, including possible differential effects and postreceptor degradation, are also likely to benefit from the availability of many different insulin analogues.

ACKNOWLEDGMENTS

We thank G. Petranyi, University of Newcastle, Newcastle upon Tyne, United Kingdom, for allowing us to review preliminary clinical results before publication.

We are also grateful to P. De Meyts, City of Hope National Medical Center, Duarte, California; G. Dodson and P. Turkenburg, University of York, United Kingdom; J.L. Bolaffi, G.M. Grodsky, P.G. Green, and R. Guy, University of California, San Francisco, California; M. Kobayashi, Shiga University of Medical Science, Shiga, Japan; B.A. Parkar and W.G. Reeves, University Hospital, Nottingham, United Kingdom; E.M. Spencer, University of California, San Francisco, California; and to K. Drejer, K. Falholt, J.F. Hansen, S. Havelund, P. Hougaard, I. Jensen, S. Jørgensen, V. Kruse, L. Langkjaer, U. Ribel, and A.R. Sørensen, Novo Research Institute, Novo Nordisk A/S, Bagsvaerd, Denmark for generously sharing unpublished observations with us. We also thank L. Nørskov-Lauritsen for advice and assistance on the molecular graphics, and K. Larsen and E. Jørgensen for help with preparing the manuscript. We are grateful to L.G Heding for critically reading the manuscript.

REFERENCES

- Banting FG, Best CH: Pancreatic extracts. J Lab Clin Med 7:464–72, 1922
- Brange J, Skelbaek-Pedersen B, Langkjaer L, Damgaard U, Ege H, Havelund S, Heding LG, Jørgensen KH, Lykkeberg J, Markussen J, Pingel M, Rasmussen E: Galenics of Insulin: The Physicochemical and Pharmaceutical Aspects of Insulin and Insulin Preparations. Berlin, Springer-Verlag, 1987
- Brange J, Ribel U, Hansen JF, Dodson G, Hansen MT, Havelund S, Melberg SG, Norris F, Norris K, Snel L, Sørensen AR, Voigt HO: Monomeric insulins obtained by protein engineering and their medical implications. Nature (Lond) 333:679–82, 1988
- 4. Malherbe C, De Gasparo M, De Hertogh R, Hoet JJ: Circadian variations of blood sugar and plasma insulin levels in man. *Diabetologia* 5:397–404, 1969
- 5. Hansen AP, Johansen K: Diurnal patterns of blood glucose, serum free fatty acids, insulin, glucagon and growth hormone in normals and juvenile diabetics. *Diabetologia* 6:27–33, 1970
- Service FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF: Mean amplitude of glycemic excursions, a measure of diabetic instability. *Diabetes* 19:644–55, 1970
- Genuth SM: Plasma insulin and glucose profiles in normal, obese and diabetic persons. Ann Intern Med 79: 812–22, 1973
- Ahmed M, Gannon MC, Nuttall FQ: Postprandial plasma glucose, insulin, glucagon and triglyceride responses to a standard diet in normal subjects. *Diabetologia* 12:61– 67, 1976
- Owens DR, Wragg KG, Biggs PI, Luzio S, Kimber G, Davies C: Comparison of the metabolic response to a glucose tolerance test and a standardized test meal and the response to serial test meals in normal healthy subjects. Diabetes Care 2:409–13, 1979
- Eaton RP, Allen RC, Schade DS, Standefer JC: "Normal" insulin secretion: the goal of artificial insulin delivery systems? *Diabetes Care* 3:270–73, 1980
- Schade DS, Eaton RP, Spencer W: Normalization of plasma insulin profiles in diabetic subjects with pro-

- grammed insulin delivery. Diabetes Care 3:9-14, 1980
- Owens DR, Wragg KG, Biggs PI, Luzio S, Davies CJ, Jones MK: The reproducibility of serial meal and oral glucose tolerance tests in normal subjects. *Diabete Me*tab 7:25–33, 1981
- Service FJ, Hall LD, Westland RE, O'Brien PC, Go VLW, Haymond MW, Rizza RA: Effects on size, time of day and sequence of meal ingestion on carbohydrate tolerance in normal subjects. *Diabetologia* 25:316–21, 1983
- Schade DS, Santiago JV, Skyler JS, Rizza RA: Intensive Insulin Therapy. Princeton, NJ, Excerpta Med., 1983
- Seltzer H, Allen W, Herron A Jr, Brennam M: Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest 46:323–35, 1967
- Kosaka K, Hagura R, Kuzuya T: Insulin responses in equivocal and definite diabetes, with special reference to subjects who had mild glucose intolerance but later developed definite diabetes. *Diabetes* 26:944–52, 1977
- O'Rahilly SP, Rudenski AS, Burnett MA, Nugent Z, Hosker JP, Darling P, Turner RC: Beta-cell dysfunction, rather than insulin insensitivity, is the primary defect in familial type 2 diabetes. *Lancet* 2:360–64, 1986
- DeFronzo RA: Lilly lecture 1987: the triumvirate: β-cell, muscle, liver: a collusion responsible for NIDDM. *Diabetes* 37:667–87, 1988
- Eriksson J, Franssila-Kallunki A, Ekstrand A, Saloranta C, Widén E, Schalin C, Groop L: Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med 321:337–43, 1989
- Saad MF, Pettitt DJ, Mott DM, Knowler WC, Nelson RG, Bennett PH: Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes. *Lancet* 1:1356–59, 1989
- Temple RC, Luzio SD, Schneider AE, Carrington CA, Owens DR, Sobey WJ, Hales CN: Insulin deficiency in non-insulin dependent diabetes. *Lancet* 1:293–95, 1989
- Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C, Frank BH, Galloway JA, van Cauter E: Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med 318:1231–39, 1988
- 23. Luzio SD, Owens DR, Vora J, Dolben J, Smith H: Intravenous insulin infusion simulates early insulin peak and reduces postprandial hyperglycemia in NIDDM (Abstract). *Diabetic Med* 6 (Suppl. 2):18A, 1989
- Parker ML, Pildes RS, Chao K-L, Cornblath M, Kipnis DM: Juvenile diabetes mellitus, a deficiency in insulin. Diabetes 17:27–32, 1968
- Madsbad S, Alberti KGMM, Binder C, Burrin JM, Faber O, Krarup T, Reguer L: Role of residual insulin secretion in protecting against ketoacidosis in insulin-dependent diabetes. *Br Med J* 2:1257–59, 1979
- 26. Scott DA: Crystalline insulin. *Biochem J* 28:1592–602. 1934
- 27. Hagedorn HC, Jensen BN, Krarup NB, Wodstrup I: Protamine insulinate. *JAMA* 106:177–80, 1936
- 28. Scott DA, Fisher AM: Studies on insulin with protamine. J Pharmacol Exp Ther 58:78–92, 1936
- Krayenbühl C, Rosenberg T: Crystalline protamine insulin. Rep Steno Mem Hosp Nord Insulinlab 1:60–73, 1946
- Hallas-Møller K, Petersen K, Schlichtkrull J: Crystalline and amorphous insulin-zinc compounds with prolonged action. Science 116:394–99, 1952

- 31. Schlichtkrull J, Funder J, Munck O: Clinical evaluation of a new insulin preparation. *Med Hyg* 1:303–305, 1961
- Schlichtkrull J, Brange J, Christiansen AH, Hallund O, Heding LG, Jørgensen KH: Clinical aspects of insulin antigenicity. *Diabetes* 21 (Suppl. 2):649–56, 1972
- 33. Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD: Expression in *Escherichia coli* of chemically synthesized genes for human insulin. *Proc Natl Acad Sci USA* 76:106–10, 1979
- 34. Chance RE, Kroeff EP, Hoffmann JA, Frank BH: Chemical, physical, and biologic properties of biosynthetic human insulin. *Diabetes Care* 4:147–54, 1981
- 35. Markussen J, Damgaard U, Jørgensen KH, Rasmussen E, Snel L, Thim L, Voigt HO: Production of human monocomponent insulin. In *Hormone Drugs*. Gueriguian JL, Bransome ED, Outschoorn AS, Eds. Rockville, MD, U.S. Pharm. Conv., 1982, p. 116–26.
- 36. Pirart J: Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. *Diabetes Care* 1:168–88, 252–63, 1978
- Tchobroutsky G: Relation of diabetic control to development of microvascular complications. *Diabetologia* 15:143–52, 1978
- Skyler JS: Complications of diabetes mellitus: relationship to metabolic dysfunction. *Diabetes Care* 2:499– 509, 1979
- Raskin P, Pietri AO, Unger R, Shannon WA Jr: The effect of diabetic control on the width of skeletal-muscle capillary basement membrane in patients with type I diabetes mellitus. N Engl J Med 309:1546–50, 1983
- Camerini-Davalos RA, Velasco C, Glasser M, Bloodworth JMB Jr: Drug-induced reversal of early diabetic microangiopathy. N Engl J Med 309:1551–56, 1983
- 41. Siperstein MD: Diabetic microangiopathy and the control of blood glucose. *N Engl J Med* 309:1577–79, 1983
- Lauritzen T, Frost-Larsen K, Larsen H-W, Deckert T, The Steno Study Group: Effect of 1 year of near-normal blood glucose levels on retinopathy in insulin-dependent diabetics. Lancet 1:200–204, 1983
- Hanssen KF, Dahl-Jørgensen K, Lauritzen T, Feldt-Rasmussen B, Brinchmann-Hansen O, Deckert T: Diabetic control and microvascular complications: the near-normoglycaemic experience. *Diabetologia* 29:677–84, 1986
- 44. Reichard P, Britz A, Cars I, Nilsson BY, Sobocinsky-Olsson B, Rosenqvist U: The Stockholm diabetes intervention study (SDIS): 18 months' results. *Acta Med Scand* 224:115–22, 1988
- 45. Chantelau E, Weiss H, Weber U, Sonnenberg GE, Berger M: Four-year follow-up of retinal status and glycosylated haemoglobin in patients with insulin-dependent diabetes mellitus. *Diabete Metab* 14:259–63, 1988
- Dahl-Jørgensen K, Hanssen KF, Kierulf P, Bjøro T, Sandvik L, Aagenæs Ø: Reduction of urinary albumin excretion after 4 years of continuous subcutaneous insulin infusion in insulin-dependent diabetes mellitus: the Oslo study. Acta Endocrinol 117:19–25, 1988
- Chase HP, Jackson WE, Hoops SL, Cockerham RS, Archer PG, O'Brien D: Glucose control and the renal and retinal complications of insulin-dependent diabetes. *JAMA* 261:1155–60, 1989
- 48. McCane DR, Hadden DR, Atkinson AB, Archer DB, Kennedy L: Long-term glycaemic control and diabetic

- retinopathy. Lancet 2:824-28, 1989
- Engerman RL: Pathogenesis of diabetic retinopathy. Diabetes 38:1203–206, 1989
- 50. Unger RH: Meticulous control of diabetes: benefits, risks, and precautions. *Diabetes* 31:479–83, 1982
- 51. Pickup J: The pursuit of perfect control in diabetes: better insulin better delivered. *Br Med J* 297:929–31, 1988
- 52. Home PD, Thow JC, Tunbridge FKE: Insulin treatment: a decade of change. *Br Med Bull* 45:92–110, 1989
- Skyler JS: Issues, controversies, and directions in diabetes care. In *Diabetes 1988*. Larkins R, Zimmet P, Chisholm D, Eds. Amsterdam, Elsevier, 1989, p. 793–801
- 54. Zinman B: The physiologic replacement of insulin: an elusive goal. N Engl J Med 321:363–70, 1989
- 55. Berger M: Towards more physiological insulin therapy in the 1990s: a comment. *Diabetes Res Clin Pract* 6:S25–31, 1989
- Galloway JA, Spradlin CT, Nelson RL, Wentworth SM, Davidson JA, Swarner JL: Factors influencing the absorption, serum insulin concentration, and blood glucose responses after injections of regular insulin and various insulin mixtures. *Diabetes Care* 4:366–76, 1981
- Berger M, Cüppers HJ, Hegner H, Jörgens V, Berchtold P: Absorption kinetics and biologic effects of subcutaneously injected insulin preparations. *Diabetes Care* 5:77– 91, 1982
- 58. Binder C, Lauritzen T, Faber O, Pramming S: Insulin pharmacokinetics. *Diabetes Care* 7:188–99, 1984
- Owens DR: Human Insulin: Clinical Pharmacological Studies in Normal Man. MD thesis. Lancaster, UK, Medical & Technical, 1986
- Heine RJ: New aids for treatment—heading in the right direction. In *Diabetes 1988*. Larkins R, Zimmet P, Chisholm D, Eds. Amsterdam, Elsevier, 1989, p. 1231–34.
- Tattersall R, Gale E: Patient self-monitoring of blood glucose and refinements of conventional insulin treatment. Am J Med 70:177–82, 1981
- Skyler JS, Miller NE, O'Sullivan MJ, Reeves ML, Ryan EA, Seigler DE, Skyler DL, Zigo MA: Use of insulin in insulin-dependent diabetes mellitus. In *Insulin Update:* 1982. Skyler JS, Ed. Princeton, NJ, Excerpta Med., 1982, p. 125–56
- 63. Watkins PJ: ABC of diabetes: insulin treatment. *Br Med J* 284:1929–32, 1982
- 64. Oakley W, Hill D, Oakley N: Combined use of regular and crystalline protamine (NPH) insulins in the treatment of severe diabetes. *Diabetes* 15:219–22, 1966
- 65. Galloway JA, Bressler R: Insulin treatment in diabetes. Med Clin North Am 62:663–80, 1978
- Skyler JS, Skyler DL, Seigler DE, O'Sullivan MJ: Algorithms for adjustment of insulin dosage by patients who monitor blood glucose. *Diabetes Care* 4:311–18, 1981
- 67. Pickup JC, Keen H, Parsons JA, Alberti KGMM: Continuous subcutaneous insulin infusion: an approach to achieving normoglycaemia. *Br Med J* 1:204–207, 1978
- Pickup JC, Keen H, Viberti GC, White MC, Kohner EM, Parsons JA, Alberti KGMM: Continuous subcutaneous insulin infusion in the treatment of diabetes mellitus. *Diabetes Care* 3:290–300, 1980
- 69. Tamborlane WV, Sherwin RS, Genel M, Felig P: Reduction to normal of plasma glucose in juvenile diabetes by subcutaneous administration of insulin with a portable infusion pump. *N Engl J Med* 300:573–78, 1979
- 70. Champion MC, Shepherd GAA, Rodger NW, Dupre J:

- Continuous subcutaneous infusion of insulin in the management of diabetes mellitus. *Diabetes* 29:206–12, 1980
- Lauritzen T, Pramming S, Deckert T, Binder C: Pharmacokinetics of continuous subcutaneous insulin infusion. *Diabetologia* 24:326–29, 1983
- Rizza RA, Gerich JE, Haymond MW, Westland RE, Hall LD, Clemens AH, Service FJ: Control of blood sugar in insulin-dependent diabetes: comparison of an artificial endocrine pancreas, continuous subcutaneous insulin infusion, and intensified conventional insulin therapy. N Engl J Med 303:1313–18, 1980
- Reeves ML, Seigler DE, Ryan EA, Skyler JS: Glycemic control in insulin-dependent diabetes mellitus: comparison of outpatient intensified conventional therapy with continuous subcutaneous insulin infusion. *Am J Med* 72:673–80, 1982
- 74. Phillips M, Simpson RW, Holman RR, Turner RC: A simple and rational twice daily insulin regime: distinction between basal and meal insulin requirement. *Q J Med* 191:493–506, 1979
- Hosker JP, Turner RC: Insulin treatment of newly-presenting ketotic diabetic patients into the honeymoon period. Lancet 2:633–35, 1982
- Turner RC, Phillips M, Jones R, Dornan TL, Holman RR: Ultralente-based insulin regimens in insulin-dependent diabetics. In *Insulin Update: 1982*. Skyler JS, Ed. Princeton, NJ, Excerpta Med., 1982, p. 157–74
- Turner RC, Phillips MA, Ward EA: Ultralente-based regimens: clinical applications, advantages and disadvantages. Acta Med Scand Suppl 671:75

 –86, 1983
- Holman RR, Dornan TL, Mayon-White V, Howard-Williams J, Orde-Peckar C, Jenkins L, Steemson J, Rolfe R, Smith B, Barbour D, McPherson K, Poon P, Rizza C, Mann JI, Knight AH, Bron AJ, Turner RC: Prevention of deterioration of renal and sensory-nerve function by more intensive management of insulin-dependent diabetic patients: a two-year randomized prospective study. Lancet 1:204–208, 1983
- Houtzagers CMGJ, Berntzen PA, van der Stap H, Van Maarschalkerweerd WWA, Lanting P, Boen-Tan I, Heine RJ, van der Veen EA: Efficacy and acceptance of two intensified conventional insulin therapy regimens: a longterm cross-over comparison. *Diabetic Med* 6:416–21, 1989
- 80. Schlichtkrull J: The absorption of insulin. Acta Paediatr Scand Suppl 207:97–102, 1977
- 81. Rasmussen SM, Heding LG, Parbst E, Vølund A: Serum IRI in insulin-treated diabetics during a 24-hour period. *Diabetologia* 11:151–58, 1975
- 82. Roy B, Chou MCY, Field JB: Time-action characteristics of regular and NPH insulin in insulin-treated diabetics. *J Clin Endocrinol Metab* 50:475-79, 1980
- 83. Olsson PO, Arnqvist H, von Schenck H: Free insulin profiles in insulin-dependent diabetics treated with one or two insulin injections per day. *Acta Med Scand* 220:133–41, 1986
- 84. Van Haeften TW: Clinical significance of insulin antibodies in insulin-treated diabetic patients. *Diabetes Care* 12:641–48, 1989
- Eaton RP, Spencer W, Schade DS, Shafer BD, Corbett W: Diabetic glucose control: matching plasma insulin concentration to dietary and stress hyperglycemia. *Diabetes Care* 1:40–44, 1978
- Kinmonth AL, Baum JD: Timing of pre-breakfast insulin injection and postprandial metabolic control in diabetic

- children. Br Med J 280:604-606, 1980
- 87. Dimitriadis GD, Gerich JE: Importance of timing of preprandial subcutaneous insulin administration in the management of diabetes mellitus. *Diabetes Care* 6:374– 77, 1983
- Lean MEJ, Ng LL, Tennison BR: Interval between insulin injection and eating in relation to blood glucose control in adult diabetics. *Br Med J* 290:105–108, 1985
- 89. Patrick AW, Collier A, Matthews DM, Macintyre CCA, Clarke BF: The importance of the time interval between insulin injection and breakfast in determining postprandial glycaemic control: a comparison between human and porcine insulin. *Diabetic Med* 5:32–35, 1988
- Home PD, Pickup JC, Keen H, Alberti KGMM, Parsons JA, Binder C: Continuous subcutaneous insulin infusion: comparison of plasma insulin profiles after infusion or bolus injection of the mealtime dose. *Metabolism* 30:439– 42, 1981
- Bottermann P, Gyaram H, Wahl K, Ermler R, Lebender A: Pharmacokinetics of biosynthetic human insulin and characteristics of its effect. *Diabetes Care* 4:168–69, 1981
- 92. Kemmer FW, Sonnenberg G, Cüppers HJ, Berger M: Absorption kinetics of semisynthetic human insulin and biosynthetic (recombinant DNA) human insulin. *Diabetes Care* 5 (Suppl 2):23–28, 1982
- 93. Galloway JA, Root MA, Bergstrom R, Spradlin CT, Howey DC, Fineberg SE, Jackson RL: Clinical pharmacologic studies with human insulin (recombinant DNA). *Diabetes Care* 5 (Suppl. 2):13–22, 1982
- Sonnenberg GE, Kemmer FW, Cüppers H-J, Berger M: Subcutaneous use of regular human insulin (Novo): pharmacokinetics and continuous insulin infusion therapy. *Diabetes Care* 6 (Suppl. 1):35–39, 1983
- Waldhäusl WK, Bratusch-Marrain PR, Vierhapper H, Nowotny P: Insulin pharmacokinetics following continuous infusion and bolus injection of regular porcine and human insulin in healthy man. *Metabolism* 32:478–86, 1983
- 96. Pramming S, Lauritzen T, Thorsteinsson B, Johansen K, Binder C: Absorption of soluble and isophane semi-synthetic human and porcine insulin in insulin-dependent diabetic subjects. *Acta Endocrinol* 105:215–20, 1984
- 97. Owens DR, Jones MK, Birtwell AJ, Burge CTR, Jones IR, Heyburn PJ, Hayes TM, Heding LG: Pharmacokinetics of subcutaneously administered human, porcine and bovine neutral soluble insulin to normal man. *Horm Metab Res* 16:195–99, 1984
- 98. Fernqvist E, Linde B, Östman J, Gunnarsson R: Effects of physical exercise on insulin absorption in insulin-dependent diabetics: a comparison between human and porcine insulin. *Clin Physiol* 6:489–98, 1986
- 99. Gulan M, Gottesman IS, Zinman B: Biosynthetic human insulin improves postprandial glucose excursions in type I diabetes. *Ann Intern Med* 107:506–509, 1987
- Moore EW, Mitchell ML, Chalmers TC: Variability in absorption of insulin-I¹³¹ in normal and diabetic subjects after subcutaneous and intramuscular injection. J Clin Invest 38:1222–27, 1959
- Binder C: Absorption of injected insulin. Acta Pharmacol Toxicol Suppl 2:1–87, 1969
- Hildebrandt P, Sestoft L, Nielsen SL: The absorption of subcutaneously injected short-acting soluble insulin: influence of injection technique and concentration. *Dia*betes Care 6:459–62, 1983
- 103. Kølendorf K, Bojsen J, Deckert T: Absorption and mis-

948

- cibility of regular porcine insulin after subcutaneous injection of insulin-treated diabetic patients. *Diabetes Care* 6:6–9, 1983
- 104. Berger M, Cüppers HJ, Halban PA, Offord RE: The effect of aprotinin on the absorption of subcutaneously injected regular insulin in normal subjects. *Diabetes* 29:81– 83, 1980
- 105. Freidenberg GR, White N, Cataland S, O'Dorisio TM, Sotos JF, Santiago JV: Diabetes responsive to intravenous but not subcutaneous insulin: effectiveness of aprotinin. N Engl J Med 305:363–68, 1981
- Linde B, Gunnarsson R: Influence of aprotinin on insulin absorption and subcutaneous blood flow in type I (insulin-dependent) diabetes. *Diabetologia* 28:645–48, 1985
- Owens DR, Vora JP, Birtwell J, Luzio S, Hayes TM: The influence of aprotinin on regional absorption of soluble human insulin. Br J Clin Pharmacol 25:453–56, 1988
- 108. Williams G, Pickup JC, Collins ACG, Keen H: Prostaglandin E₁ accelerates subcutaneous insulin absorption in insulin-dependent diabetic patients. *Diabetic Med* 1:109–13, 1984
- 109. Menon RK, Gaylarde PM, Hyden AM, Grace AA, Dandona P: Insulin absorption accelerated by α-adrenergic blockade at injection site. *Diabetes Care* 10:470–72, 1987
- Hildebrandt P, Birch K, Sestoft L, Nielsen SL: Orthostatic changes in subcutaneous blood flow and insulin absorption. *Diabetes Res* 2:187–90, 1985
- 111. Binder C, Nielsen A, Jørgensen K: The absorption of an acid and a neutral insulin solution after subcutaneous injection into different regions in diabetic patients. Scand J Clin Lab Invest 19:156–63, 1967
- 112. Koivisto VA, Felig P: Alterations in insulin absorption and in blood glucose control associated with varying insulin injection sites in diabetic patients. *Ann Intern Med* 92:59–61, 1980
- 113. Süsstrunk H, Morell B, Ziegler WH, Froesch ER: Insulin absorption from the abdomen and the thigh in healthy subjects during rest and exercise: blood glucose, plasma insulin, growth hormone, adrenaline and noradrenaline levels. *Diabetologia* 22:171–74, 1982
- 114. Guerra SMO, Kitabchi AE: Comparison of the effectiveness of various routes of insulin injection: insulin levels and glucose response in normal subjects. J Clin Endocrinol Metab 42:869–74, 1976
- Frid A, Gunnarsson R, Güntner P, Linde B: Effects of accidental intramuscular injection on insulin absorption in IDDM. *Diabetes Care* 11:41–45, 1988
- Spraul M, Chantelau E, Koumoulidou J, Berger M: Subcutaneous or nonsubcutaneous injection of insulin. *Di*abetes Care 11:733–36, 1988
- 117. Galloway JA, Root MA, Rathmacher RP, Carmichael RH: A comparison of acid regular and neutral regular insulin: responses of normal fasted subjects to varying doses of regular insulin. *Diabetes* 22:471–79, 1973
- 118. Taylor R, Home PD, Alberti KGMM: Plasma free insulin profiles after administration of insulin by jet and conventional syringe injection. *Diabetes Care* 4:377–79, 1981
- 119. Pehling GB, Gerich JE: Comparison of plasma insulin profiles after subcutaneous administration of insulin by jet spray and conventional needle injection in patients with insulin-dependent diabetes mellitus. Mayo Clin Proc 59:751–54, 1984

- 120. Perriello G, De Feo P, Ventura MM, Calcinaro F, Dell'Olio A, Lolli C, Pietropaolo M, Santeusanio F, Bolli GB, Brunetti P: Pharmacokinetics and action of insulin administered by a jet injector in type I diabetes mellitus. In Advanced Models for the Therapy of Insulin-Dependent Diabetes. Brunetti P, Waldhäusl WK, Eds. New York, Raven, 1987, p. 97–103
- 121. Houtzagers CMGJ, Berntzen PA, van der Stap H, Heine RJ, van der Veen EA: Absorption kinetics of short- and intermediate-acting insulins after jet injection with Medijector II. *Diabetes Care* 11:739–42, 1988
- Edsberg B, Herly D, Hildebrandt P, Kühl C: Insulin bolus given by sprinkler needle: effect on absorption and glycaemic response to a meal. *Br Med J* 294:1373–76, 1987
- Dandona P, Hooke D, Bell J: Exercise and insulin absorption from subcutaneous tissue. Br Med J 1:479–80, 1978
- 124. Koivisto VA, Felig P: Effects of leg exercise on insulin absorption in diabetic patients. N Engl J Med 298:79– 83, 1978
- Berger M, Halban PA, Muller WA, Offord RE, Renold AE, Vranic M: Mobilization of subcutaneously injected tritiated insulin in rats: effects of muscular exercise. *Diabetologia* 15:133–40, 1978
- 126. Berger M, Halban PA, Assal JP, Offord RE, Vranic M, Renold AE: Pharmacokinetics of subcutaneously injected tritiated insulin: effects of exercise. *Diabetes* 28 (Suppl. 1):53–57, 1979
- 127. Kølendorf K, Bojsen J, Nielsen SL: Adipose tissue blood flow and insulin disappearance from subcutaneous tissue. Clin Pharmacol Ther 25:598–604, 1979
- 128. Zinman B, Vranic M, Albisser AM, Leibel BS, Marliss EB: The role of insulin in the metabolic response to exercise in diabetic man. *Diabetes* 28 (Suppl. 1):76–81, 1979
- 129. Ferrannini E, Linde B, Faber O: Effect of bicycle exercise on insulin absorption and subcutaneous blood flow in the normal subject. *Clin Physiol* 2:59–70, 1982
- Dillon RS: Improved serum insulin profiles in diabetic individuals who massaged their insulin injection sites. *Diabetes Care* 6:399–401, 1983
- 131. Linde B: Dissociation of insulin absorption and blood flow during massage of a subcutaneous injection site. *Diabetes Care* 9:570–74, 1986
- Klemp P, Staberg B, Madsbad S, Kølendorf K: Smoking reduces insulin absorption from subcutaneous tissue. Br Med J 284:237, 1982
- Koivisto VA: Sauna-induced acceleration in insulin absorption from subcutaneous injection site. Br Med J 280:1411–13, 1980
- Koivisto VA, Fortney S, Hendler R, Felig P: A rise in ambient temperature augments insulin absorption in diabetic patients. *Metabolism* 30:402–405, 1981
- 135. Hildebrandt P, Sejrsen P, Nielsen SL, Birch K, Sestoft L: Diffusion and polymerization determines the insulin absorption from subcutaneous tissue in diabetic patients. *Scand J Clin Lab Invest* 45:685–90, 1985
- Fernqvist E, Gunnarsson R, Linde B: Influence of circulating epinephrine on absorption of subcutaneously injected insulin. *Diabetes* 37:694–701, 1988
- 137. Fernqvist-Forbes E, Linde B, Gunnarsson R: Insulin absorption and subcutaneous blood flow in normal subjects during insulin-induced hypoglycemia. *J Clin Endocrinol Metab* 67:619–23, 1988

- De Meijer PHEM: Insulin Absorption: Clinical and Pharmacokinetic Studies. MD thesis. Nijmegen, The Netherlands, Univ. of Nijmegen, 1988
- Houtzagers CMGJ: Subcutaneous insulin delivery: present status. Diabetic Med 6:754–61, 1989
- Bolli GB: The pharmacokinetic basis of insulin therapy in diabetes mellitus. *Diabetes Res Clin Pract* 6:S3–16, 1989
- 141. Sestoft L, Vølund A, Gammeltoft S, Birch K, Hildebrandt P: The biological properties of human insulin: subcutaneous absorption, receptor binding and the clinical effect in diabetics assessed by a new statistical method. Acta Med Scand 212:21–28, 1982
- Fernqvist-Forbes E, Gunnarsson R, Linde B: Insulin induced hypoglycaemia and absorption of injected insulin in diabetic patients. *Diabetic Med* 6:621–26, 1989
- Hildebrandt P, Birch K: Basal rate subcutaneous insulin infusion: absorption kinetics and relation to local blood flow. *Diabetic Med* 5:434–40, 1988
- 144. Mosekilde E, Jensen KS, Binder C, Pramming S, Thorsteinsson B: Modeling absorption kinetics of subcutaneous injected soluble insulin. J Pharmacokinet Biopharm 17:67–87, 1989
- Lauritzen T, Binder C, Faber OK: Importance of insulin absorption, subcutaneous blood flow and residual betacell function in insulin therapy. Acta Paediatr Scand Suppl 283:81–85, 1980.
- 146. Blundell T, Dodson G, Hodgkin D, Mercola D: Insulin: the structure in the crystal and its reflection in chemistry and biology. Adv Protein Chem 26:279–402, 1972
- 147. Binder C: A theoretical model for the absorption of soluble insulin. In *Artificial Systems for Insulin Delivery*. Brunetti P, Alberti KGMM, Albisser AM, Hepp KD, Massi Benedetti M, Eds. New York, Raven, 1983, p. 53–57
- 148. Ribel U, Jørgensen K, Brange J, Henriksen U: The pig as a model for subcutaneous insulin absorption in man. In *Diabetes 1985*. Serrano-Rios M, Lefèbvre PJ, Eds. Amsterdam, Elsevier, 1986, p. 891–96.
- 149. Sonnenberg GE, Chantelau E, Sundermann S, Hauff C, Berger M: Human and porcine regular insulins are equally effective in subcutaneous replacement therapy: results of a double-blind crossover study in type I diabetic patients with continuous subcutaneous insulin infusion. *Diabetes* 31:600–602, 1982
- 150. Sonnenberg GE, Berger M: Human insulin: much ado about one amino acid? *Diabetologia* 25:457–59, 1983
- Wintersteiner O, du Vigneaud V, Jensen H: Studies on crystalline insulin. V. The distribution of nitrogen in crystalline insulin. J Pharmacol Exp Ther 32:397

 –411, 1928
- 152. Ryle AP, Sanger F, Smith LF, Kitai R: The disulphide bonds of insulin. *Biochem J* 60:541–56, 1955
- Adams MJ, Blundell TL, Dodson EJ, Dodson GG, Vijayan M, Baker EN, Harding MM, Hodgkin DC, Rimmer B, Sheat S: Structure of rhombohedral 2 zinc insulin crystals. *Nature* (Lond) 224:491–95, 1969
- 154. Baker EN, Blundell TL, Cutfield JF, Cutfield SM, Dodson EJ, Dodson GG, Hodgkin DMC, Hubbard RE, Isaacs NW, Reynolds CD, Sakabe K, Sakabe N, Vijayan NM: The structure of 2Zn pig insulin crystals at 1.5 Å resolution. *Philos Trans R Soc Lond B Biol Sci* 319:369–456, 1988
- Pekar AH, Frank BH: Conformation of proinsulin: a comparison of insulin and proinsulin self-association at neutral pH. *Biochemistry* 11:4013–16, 1972
- 156. Goldman J, Carpenter FH: Zinc binding, circular di-

- chroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. *Biochemistry* 13:4566–74, 1974
- 157. Helmerhorst E, Stokes GB: Self-association of insulin: its pH dependence and effect of plasma. *Diabetes* 36:261–64, 1987
- 158. Ege H: Semantics of insulin for pumps. In Advanced Models for the Therapy of Insulin-Dependent Diabetes. Brunetti P, Waldhäusl WK, Eds. New York, Raven, 1987, p. 65–70
- 159. Brange J, Langkjær L, Havelund S, Sørensen E: Chemical stability of insulin: neutral insulin solutions (Abstract). *Diabetologia* 25:193, 1983
- Cunningham LW, Fischer RL, Vestling CS: A study of the binding of zinc and cobalt by insulin. J Am Chem Soc 77:5703–707, 1955
- Emdin SO, Dodson GG, Cutfield JM, Cutfield SM: Role of zinc in insulin biosynthesis: some possible zinc-insulin interactions in the pancreatic B-cell. *Diabetologia* 19:174–82, 1980
- 162. Wood SP, Blundell TL, Wollmer A, Lazarus NR, Neville RWJ: The relation of conformation and association of insulin to receptor binding: X-ray and circular-dichroism studies on bovine and hystricomorph insulins. *Eur J Biochem* 55:531–42, 1975
- Zimmerman AE, Moule ML, Yip CC: Guinea pig insulin. II. Biological activity. J Biol Chem 249:4026–29, 1974
- Zimmerman AE, Kells DIC, Yip CC: Physical and biological properties of guinea pig insulin. Biochem Biophys Res Commun 46:2127–33, 1972
- 165. Horuk R, Wood SP, Blundell TL, Lazarus NR, Neville RWJ, Raper JH, Wollmer A: Structure, self-association and potency of casiragua and guinea pig insulins: evidence that monomeric insulin can bind receptors. In Hormones and Cell Regulation. Dumont J, Nunez J, Eds. Amsterdam, Elsevier, 1980, p. 123–39
- 166. Bajaj M, Blundell TL, Horuk R, Pitts JE, Wood SP, Gowan LK, Schwabe C, Wollmer A, Gliemann J, Gammeltoft S: Coypu insulin: primary structure, conformation and biological properties of a hystricomorph rodent insulin. *Biochem J* 238:345–51, 1986
- Horuk R, Blundell TL, Lazarus NR, Neville RWJ, Stone D, Wollmer A: A monomeric insulin from the porcupine (Hystrix cristata), an Old World hystricomorph. Nature (Lond) 286:822–24, 1980
- 168. Fisher WH, Saunders D, Brandenburg D, Wollmer A, Zahn H: A shortened insulin with full in vitro potency. Biol Chem Hoppe Seyler 366:521–25, 1985
- Insulin Research Group, Shanghai: Structural studies on des-pentapeptide (B26-30)-insulin. I. The preparation and properties of des-pentapeptide-insulin. Sci Sin 19:351– 57, 1976
- Moloney PJ, Aprile MA, Wilson S: Sulfated insulin for treatment of insulin-resistant diabetics. J New Drugs 4:258–63, 1964
- 171. Thomas JH: Electrophoresis of (35S) sulphated insulin: immunological and biological properties of the isolated electrophoretic components. Horm Metab Res 3:207–12, 1971
- Boesel RW, Carpenter FH: Preparation and properties of tetra(nitrotyrosine)insulin (bovine) (Abstract). Fed Proc 31:255A, 1972
- Geiger R: Chemie des Insulins. Chemiker-Zeitung Jahrgang 100:111–29, 1976
- 174. Märki F, De Gasparo M, Eisler K, Kamber B, Riniker B,

- Rittel W, Sieber P: Synthesis and biological activity of seventeen analogues of human insulin. *Hoppe-Seylers Z Physiol Chem* 360:1619–32, 1979
- 175. Jeffrey PD: Self-association of des-(B26-B30)-insulin: the effect of Ca²⁺ and some other divalent cations. *Biol Chem Hoppe Seyler* 367:363–69, 1986
- Winter G, Fersht AR: Engineering enzymes. Trends Biotechnol 2:115–19, 1984
- 177. Fersht AR, Shi J-P, Knill-Jones J, Lowe DM, Wilkinson AJ, Blow DM, Brick P, Carter P, Waye MMY, Winter G: Hydrogen bonding and biological specificity analysed by protein engineering. *Nature* (Lond) 314:235–38, 1985
- 178. Jones DH, McMillan AJ, Fersht AR: Reversible dissociation of dimeric tyrosyl-tRNA synthetase by mutagenesis at the subunit interface. *Biochemistry* 24:5852–57, 1985
- Brange J, Diers I, Hansen J, Hansen MT, Havelund S, Melberg SG, Norris F, Norris K, Snel L, Voigt HO: Monomeric insulins by protein engineering (Abstract). Protein Eng 1:250, 1987
- 180. Brange J, Diers I, Hansen J, Hansen MT, Havelund S, Melberg SG, Norris F, Norris K, Ribel U, Snel L, Sørensen AR, Voigt HO: Prompt insulin: monomeric insulins are absorbed three times faster from subcutis than human insulin (Abstract). *Diabetes* 36 (Suppl. 1):77A, 1987
- 181. Markussen J, Diers I, Hougaard P, Langkjaer L, Norris K, Snel L, Sørensen AR, Sørensen E, Voigt HO: Soluble, prolonged-acting insulin derivatives. III. Degree of protraction, crystallizability and chemical stability of insulins substituted in positions A21, B13, B23, B27 and B30. Protein Eng 2:157–66, 1988
- 182. Jørgensen S, Vaag A, Langkjaer L, Hougaard P, Markussen J: NovoSol Basal: pharmacokinetics of a novel soluble long-acting insulin analogue. *Br Med J* 299:415–19, 1989
- 183. Brange, J, Drejer K, Hansen JF, Havelund S, Kaarsholm NC, Melberg SG, Sørensen AR: Design of novel insulins with changed self-association and ligand binding properties. In Advances in Protein Design, International Workshop 1988. Blöcker H, Collins J, Schmid RD, Schomburg D, Eds. Basel, Chemie Weinheim, 1989, p. 139–44
- Arquilla ER, Stanford EJ: Structure function relations of insulin in solution. In *Insulin Action*. Fritz IB, Ed. New York, Academic, 1972, p. 29–62
- Bi RC, Dauter Z, Dodson E, Dodson G, Giordano F, Reynolds C: Insulin's structure as a modified and monomeric molecule. *Biopolymers* 23:391–95,1984
- 186. Hefford MA, Oda G, Kaplan H: Structure-function relationships in the free insulin monomer. *Biochem J* 237:663–68, 1986
- Pullen RA, Lindsay DG, Wood SP, Tickle IJ, Blundell TL, Wollmer A, Krail G, Brandenburg D, Zahn H, Gliemann J, Gammeltoft S: Receptor-binding region of insulin. *Nature* (Lond) 259:369–73, 1976
- 188. Gammeltoft S: Insulin receptors: binding kinetics and structure-function relationship of insulin. *Physiol Rev* 64:1321–78, 1984
- 189. Brange J, Hansen JF, Langkjaer L, Markussen J, Ribel U, Sørensen AR: Insulin analogues with improved absorption characteristics. Horm Metab Res. In press
- 190. Derewenda U, Derewenda Z, Dodson GG, Brange J: The crystal structure of the B12 Ile human insulin prepared by site-directed mutagenesis. *Protein Eng* 1:238,

- 1987
- Derewenda U, Derewenda Z, Dodson EJ, Dodson GG, Reynolds CD, Smith GD, Sparks C, Swenson D: Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. *Nature* (Lond) 338:594–96, 1989
- Dodson EJ, Dodson GG, Lewitova A, Sabesan M: Zincfree cubic pig insulin: crystallization and structure determination. J Mol Biol 125:387–96, 1978
- 193. Roy M, Lee RW-K, Kaarsholm NC, Thøgersen H, Brange J, Dunn MF: Sequence-specific 'H NMR assignments for the aromatic region of several biologically active monomeric insulins—including native insulin. Biochim Biophys Acta. In press
- 194. Roy M, Lee RW-K, Brange J, Dunn MF: Proton NMR spectrum of the native insulin monomer: evidence for conformational differences between the monomer and aggregated forms. *J. Biol Chem.* In press
- 195. Brange, J, Havelund S, Hansen P, Langkjaer L, Sørensen E, Hildebrandt P: Formulation of physically stable neutral solutions for continuous infusion by delivery systems. In Hormone Drugs. Gueriguian JL, Bransome ED, Outschoorn AS, Eds. Rockville, MD, U.S. Pharm. Conv., 1982, p. 96–105
- 196. Brange J, Havelund S, Hommel E, Sørensen E, Kühl C: Neutral insulin solutions physically stabilized by addition of Zn²⁺. Diabetic Med 3:532–36, 1986
- 197. Brange J, Hansen JF, Havelund S, Melberg SG: Studies of the insulin fibrillation process. In Advanced Models for the Therapy of Insulin-Dependent Diabetes. Brunetti P, Waldhäusl WK, Eds. New York, Raven, 1987, p. 85– 90
- Drejer K, Kruse V, Larsen UD: Insulin analogs: binding to the human liver cell line, HEP G2 (Abstract). *Diabetes* Res Clin Pract 5 (Suppl. 1):231, 1988
- 199. Schwartz GP, Burke GT, Katsoyannis PG: A superactive insulin: (B10-Aspartic acid) insulin (human). *Proc Natl Acad Sci USA* 84:6408–11, 1987
- Kobayashi M, Ohgaku S, Iwasaki M, Maegawa H, Watanabe N, Shigeta Y, Inouye K: Receptor binding and biological activity of supernormal insulin, [D-Phe^{B24}] insulin. In Current and Future Therapies With Insulin. Sakamoto N, Alberti KGMM, Eds. Amsterdam, Excerpta Med., 1983, p. 136–41
- Simon J, Freychet P, Rosselin G, De Meyts P: Enhanced binding affinity of chicken insulin in rat liver membranes and human lymphocytes: relationship to the kinetic properties of the hormone-receptor interaction. *Endo*crinology 100:115–21, 1977
- Sjödin L, Viitanen E: Radioreceptor assay for insulin formulations. *Pharm Res* 4:189–94, 1987
- Tager H, Thomas N, Assoian R, Rubenstein A, Saekow M, Olefsky J, Kaiser ET: Semisynthesis and biological activity of porcine [Leu^{B24}] insulin and [Leu^{B25}] insulin. Proc Natl Acad Sci USA 77:3181–85, 1980
- 204. Peavy DE, Brunner MR, Duckworth WC, Hooker CS, Frank BH: Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin. J Biol Chem 260:13989–94, 1985
- Freychet P, Brandenburg D, Wollmer A: Receptor-binding assay of chemically modified insulins: comparison with in vitro and in vivo bioassays. *Diabetologia* 10:1–5, 1974
- 206. Gliemann J, Gammeltoft S: The biological activity and the binding affinity of modified insulins determined on isolated fat cells. *Diabetologia* 10:105–13, 1974

- Gliemann J, Sørensen HH: Assay of insulin-like activity by the isolated fat cell method. IV. The biological activity of proinsulin. *Diabetologia* 6:499–504, 1970
- 208. Jones, RH, Dron DI, Ellis MJ, Sönksen PH, Brandenburg D: Biological properties of chemically modified insulins.
 I. Biological activity of proinsulin and insulin modified at A₁-glycine and B₂₉-lysine. *Diabetologia* 12:601–608, 1976
- 209. Rösen P, Simon M, Reinauer H: A1-modified insulins: receptor binding and biological activity. In *Insulin: Chemistry, Structure and Function of Insulin and Related Hormones*. Brandenburg D, Wollmer A, Eds. Berlin, de Gruyter, 1980, p. 403–408.
- Geiger R, Obermeier R, Teetz V, Uhmann R, Summ HD, Neubauer H, Geisen K, Regitz G: Biological activity of insulin analogues substituted at the amino group of B1phenylalanine. In *Insulin: Chemistry, Structure and Function of Insulin and Related Hormones*. Brandenburg D, Wollmer A, Eds. Berlin, de Gruyter, 1980, p. 409– 15
- 211. Kikuchi K, Larner J, Freer RJ, Day AR, Morris H, Dell A: Studies on the biological activity of degraded insulins and insulin fragments. J Biol Chem 255:9281–88, 1980
- Lapolla A, Tessari P, Poli T, Valerio A, Duner E, Iori E, Fedele D, Crepaldi G: Reduced in vivo biological activity of in vitro glycosylated insulin. *Diabetes* 37:787–91, 1988
- 213. Duronio V, Jacobs S: Comparison of insulin and IGF-I receptors. In *Insulin Receptors. Part B: Clinical Assessment, Biological Responses, and Comparison to the IGF-I Receptor*. Kahn CR, Harrison LC, Eds. New York, Liss, 1988, p. 3–18
- 215. De Meyts P, Bianco AR, Roth J: Site-site interactions among insulin receptors: characterization of the negative cooperativity. J Biol Chem 251:1877–88, 1976
- 216. De Meyts P, van Obberghen E, Roth J, Wollmer A, Brandenburg D: Mapping of the residues responsible for the negative cooperativity of the receptor-binding region of insulin. *Nature* (Lond) 273:504–509, 1978
- 217. De Meyts P, Gonzales N, Shymko RM, Drejer K, Markussen J, Brange J: Cooperative properties of monomeric insulins clarify the relationship between receptor negative cooperativity and insulin dimerization (Abstract). *Diabetes* 39:234A, 1990
- Moody AJ, Stan MA, Stan M, Gliemann J: A simple free fat cell bioassay for insulin. Horm Metab Res 6:12–16, 1974
- 220. Freychet P, Roth J, Neville DM: Insulin receptors in the liver: specific binding of ¹²⁵I insulin to the plasma membrane and its relation to insulin bioactivity. *Proc Natl Acad Sci USA* 68:1833–37, 1971
- 221. Ellis MJ, Darby SC, Jones RH, Sönksen PH: In vitro bioactivity of insulin analogues: lipogenic and anti-lipolytic potency and their interaction with the effect of native insulin. *Diabetologia* 15:403–10, 1978
- 222. Olefsky JM, Saekow M, Kobayashi M, Kolterman OG, Tager H, Given B, Baldwin D, Mako M, Markese J, Rubenstein AH, Poucher H: Properties of a mutant insulin species causing human diabetes. In *Insulin: Chemistry, Structure and Function of Insulin and Related Hormones*. Brandenburg D, Wollmer A, Eds. Berlin, de Gruyter, 1980, p. 393–402
- Sørensen AR, Brange J, Vølund A: Additive effects of human insulin and rapidly absorbed insulin analogues (Abstract). Diabetes 37 (Suppl. 1):183A, 1988

- 224. Pingel M, Vølund A, Sørensen E, Collins JE, Dieter CT: Biological potency of porcine, bovine and human insulins in the rabbit bioassay system. *Diabetologia* 28:862– 69, 1985
- WHO Expert Committee on Biological Standardization: Thirty-Seventh Report. Geneva, World Health Org., 1987
- United States Pharmacopoeia 21st Revision. Rockville, MD, U.S. Pharm. Conv., 1985
- 227. European Pharmacopoeia. 2nd ed. Sainte-Ruffine, Maisonneuve, France, 1984
- 228. Andres R, Swerdloff R, Pozefsky T, Coleman D: Manual feedback technique for the control of blood glucose concentration. In *Automation in Analytical Chemistry*. Skeggs LT Jr, Ed. New York, Medaid, 1966, p. 486–91
- Ribel U, Drejer K, Møller U, Sørensen AR: Insulin analogs and human insulin: equivalent in vivo biological activity in spite of widely different in vitro potencies (Abstract). Diabetes Res Clin Pract 5 (Suppl. 1):S368, 1988
- Ribel U, Hougaard P, Drejer K, Sørensen AR: Equivalent in vivo biological activity of insulin analogues and human insulin despite different in vitro potencies. *Diabe*tes. 39:1033–39, 1990
- 231. Volund A, Meador M, Watanabe R, Bergman RN: Insulin analogs with altered absorption kinetics exhibit metabolic effects similar to native insulin. *Diabetes Res Clin Pract* 5 (Suppl. 1):S369, 1988
- 232. Oakes ND, Clark PW, Jenkins AB, Kreagen EW: In vivo potency of insulin analogues in individual tissues of the rat. In *Proc Australian Diabetes Soc Meet, Melbourne,* 27–29 September 1989, p. 73
- 233. Sodoyez JC, Sodoyez-Goffaux F, Guillaume M, Merchie G: (1²³-I) insulin metabolism in normal rats and humans: external detection by a scintillation camera. *Science* 219:865–67, 1983
- 234. Kruse V, Jensen I, Larsen UD: Scintigraphic studies in rats of insulin analogues having from zero to five times the receptor affinity of insulin (Abstract). *Diabetologia* 32 (Suppl. 1):506A, 1989
- 235. Duckworth WC, Stentz FB, Heinemann M, Kitabchi AE: Initial site of insulin cleavage by insulin protease. *Proc* Natl Acad Sci USA 76:635–39, 1979
- Falholt K, Brange J, Vølund A, Heding LG: Intracellular metabolic effects of fast-acting monomeric insulins (Abstract). *Diabetologia* 30 (Suppl. 1):518A, 1987
- Reeves WG: Immunology of diabetes and insulin therapy. In Recent Advances in Clinical Immunology. Thompson RA, Ed. Edinburgh, Churchill-Livingstone, 1980, p. 183–220
- Reeves WG: The immune response to insulin: characterisation and clinical consequences. In *The Diabetes Annual*/2. Alberti KGMM, Krall LP, Eds. Amsterdam, Elsevier, 1986, p. 81–93
- Reeves ML, Galloway JA, deShazo RD: Complications of insulin therapy and their treatment. In *Insulin Update:* 1982. Skyler JS, Ed. Princeton, NJ, Excerpta Med., 1982, p. 295–306
- 240. Kurtz AB, Nabarro JD: Circulating insulin-binding antibodies. *Diabetologia* 19:329–34, 1980
- 241. Fineberg SE, Galloway JA, Fineberg NS, Rathbun MJ, Hufferd S: Immunogenicity of recombinant DNA human insulin. *Diabetologia* 25:465–69, 1983
- 242. Velcovsky HG, Federlin KF: Insulin-specific IgG and IgE antibody response in type I diabetic subjects exclusively

- treated with human insulin (recombinant DNA). *Diabetes Care* 5 (Suppl. 2):126–28, 1982
- 243. lavicoli M, Di Mario U, Coronel GA, Dawud AM, Arduini P, Leonardi M: Semisynthetic human insulin: Biologic and immunologic activity in newly treated diabetic subjects during a six-month follow-up. *Diabetes Care* 7:128–31, 1984
- 244. Marshall MO, Heding LG, Villumsen J, Åkerblom HK, Baevre H, Dahlquist G, Kjaergaard J-J, Knip M, Lindgren F, Ludvigsson J, Persson B, Rilva A, Stenhammar L, Strömberg L, Søvik O, Thalme B, Vidnes J, Wefring K: Development of insulin antibodies, metabolic control and B-cell function in newly diagnosed insulin dependent diabetic children treated with monocomponent human or monocomponent porcine insulin. *Diabetes Res* 9:169–75, 1988
- 245. Reeves WG: Immunogenicity of insulin of various origins. *Neth J Med* 28 (Suppl. 1):43–46, 1985
- 246. Robbins DC, Shoelson SE, Tager HS, Mead PM, Gaynor DH: Products of therapeutic insulins in the blood of insulin-dependent (type I) diabetic patients. *Diabetes* 34:510–19, 1985
- Robbins DC, Cooper SM, Fineberg SE, Mead PM: Antibodies to covalent aggregates of insulin in blood of insulin-using diabetic patients. *Diabetes* 36:838–41, 1987
- 248. Maislos M, Mead PM, Gaynor DH, Robbins DC: The source of the circulating aggregate of insulin in type I diabetic patients is therapeutic insulin. J Clin Invest 77:717–23, 1986
- Robbins DC, Mead PM: Free covalent aggregates of therapeutic insulin in blood of insulin-dependent diabetics. *Diabetes* 36:147–51, 1987
- 250. Fankhauser S: Neuere Aspekte der Insulintherapie. Schweiz Med Wochenschr 99:414–20, 1969
- Deckert T, Grundahl E: The antigenicity of pig insulin. Diabetologia 6:15–20, 1970
- Chance RE, Root MA, Galloway JA: The immunogenicity of insulin preparations. Acta Endocrinol Suppl 205:185–96, 1976
- Lunetta M, Leonardi R, Sudano L, Mughini L: Antigenicity of semisynthetic human insulin in newly diagnosed type I diabetic patients: difference between short and intermediate acting preparations. *Diab Metab* 12:83–84, 1986
- 254. Fineberg NS, Fineberg SE, Mahler RJ, Linarelli LG: Is regular human insulin less immunogenic than repository (Abstract)? *Diabetes* 35 (Suppl. 1):91A, 1986
- 255. Arquilla ER, Thiene P, Brugman T, Ruess W, Sugiyama R: Effects of zinc ion on the conformation of antigenic determinants on insulin. *Biochem J* 175:289–97, 1978
- 256. Lauritzen T, Deckert T, The Steno Study Group: One year's experience of insulin pumps in diabetes. Nord Med 97:130–33, 1982
- 257. Dahl-Jørgensen K, Torjesen P, Hanssen KF, Sandvik L, Aagenæs Ø: Increase in insulin antibodies during subcutaneous insulin infusion and multiple-injection therapy in contrast to conventional treatment. *Diabetes* 36:1–5, 1987
- 258. Berson SA, Yalow RS, Bauman A, Rothschild MA, Newerly K: Insulin-I¹³¹ metabolism in human subjects: demonstration of insulin binding globulin in the circulation of insulin treated subjects. *J Clin Invest* 35:170–90, 1956
- 259. Walford S, Allison SP, Reeves WG: The effect of insulin

- antibodies on insulin dose and diabetic control. *Diabetologia* 22:106-10, 1982
- Berson SA, Yalow RS: Quantitative aspects of the reaction between insulin and insulin-binding antibody. *J Clin Invest* 38:1996–2016, 1959
- 261. Dixon K, Exon PD, Malins JM: Insulin antibodies and the control of diabetes. *Q J Med* 44:543–53, 1975
- Kurtz AB, Mustafa BE, Daggett PR, Nabarro JDN: Effect of insulin antibodies on free and total plasma-insulin. Lancet 2:56–58, 1977
- 263. Ege H, Heding LG: Prolongation and reduction of the effect of circulating insulin caused by insulin antibodies. In Artificial Systems for Insulin Delivery. Brunetti P, Alberti KGMM, Albisser AM, Hepp KD, Massi Benedetti M, Eds. New York, Raven, 1983, p. 69–77
- 264. Chantelau E, Sonnenberg GE, Heding LG, Berger M: Impaired metabolic response to regular insulin in the presence of a high level of circulating insulin-binding immunoglobulin G. *Diabetes Care* 7:403–404, 1984
- Bolli GB, Dimitriades GD, Pehling GB, Baker BA, Haymond MW, Cryer PE, Gerich JE: Abnormal glucose counterregulation after subcutaneous insulin in insulindependent diabetes mellitus. N Engl J Med 310:1706–11, 1984
- 266. Sodoyez JC, Sodoyez-Goffaux F: Effects of insulin antibodies on bioavailability of insulin: preliminary studies using ¹²³I-insulin in patients with insulin-dependent diabetes. *Diabetologia* 27:143–45, 1984
- Francis AJ, Hanning I, Alberti KGMM: The influence of insulin antibody levels on the plasma profiles and action of subcutaneously injected human and bovine short acting insulins. *Diabetologia* 28:330–34, 1985
- Van Haeften TW, Bolli GB, Dimitriadis GD, Gottesman IS, Horwitz DL, Gerich JE: Effect of insulin antibodies and their kinetic characteristics on plasma free insulin dynamics in patients with diabetes mellitus. *Metabolism* 35:649–56, 1986
- Van Haeften TW, Heiling VJ, Gerich JE: Adverse effects of insulin antibodies on postprandial plasma glucose and insulin profiles in diabetic patients without immune insulin resistance: implications for intensive insulin regimens. *Diabetes* 36:305–309, 1987
- 270. Madsbad S, Hilsted J, Krarup T, Sestoft L, Christensen NJ, Tronier B: The importance of plasma free insulin and counterregulatory hormones for the recovery of blood glucose following hypoglycaemia in type 1 diabetics. Acta Endocrinol 108:224–30, 1985
- Waldhäusl WK, Bratusch-Marrain P, Kruse V, Jensen I, Nowotny P, Vierhapper H: Effect of insulin antibodies on insulin pharmacokinetics and glucose utilization in insulin-dependent diabetic patients. *Diabetes* 34:166– 73, 1985
- 272. Gray RS, Cowan P, di Mario U, Elton RA, Clarke BF, Duncan LJP: Influence of insulin antibodies on pharmacokinetics and bioavailability of recombinant human and highly purified beef insulins in insulin dependent diabetics. *Br Med J* 290:1687–91, 1985
- Molnar GD, Taylor WF, Langworthy AL: Plasma immunoreactive insulin patterns in insulin-treated diabetics: studies during continuous blood glucose monitoring. Mayo Clin Proc 47:709–19, 1972
- Home PD, Alberti KGMM: The new insulins: their characteristics and clinical indications. *Drugs* 24:401–13, 1982
- 275. Heding LG: Immunogenicity of insulin, a review. Pediatr

- Adolesc Endocrinol 15:137-42, 1986
- Schernthaner G, Schober E, Borkenstein M: Human insulin: is the lowered immunogenicity of clinical relevance? *Pediatr Adolesc Endocrinol* 15:150–59, 1986
- 277. Kruse V: Effect of insulin-binding antibodies on free insulin in plasma and tissue after subcutaneous injection: a model study. In *Basic and Clinical Aspects of Immunity to Insulin*. Keck K, Erb P, Eds. Berlin, de Gruyter, 1981, p. 319–34
- Schlichtkrull J, Brange J, Christiansen AH, Hallund O, Heding LG, Jørgensen KH, Rasmussen SM, Sørensen E, Vølund A: Monocomponent insulin and its clinical implications. Horm Metab Res 5 (Suppl.):134–43, 1974
- Root MA, Chance RE, Galloway JA: Immunogenicity of insulin. *Diabetes* 21 (Suppl. 2):657–60, 1972
- 280. Parkar BA, Reeves WG: In vitro priming of human lymphocytes to heterologous insulins. *J Immunol Methods* 120:159–65, 1989
- Hansen B, Nielsen JH, Welinder B: Immunogenicity of insulin in relation to its physico-chemical properties. In Basic and Clinical Aspects of Immunity to Insulin. Keck K, Erb P, Eds. Berlin, de Gruyter, 1981, p. 335–52
- 282. Pitts JE, Bajaj M: Structure and function of insulin. In *Immunology of Clinical and Experimental Diabetes*. Gupta S, Ed. New York, Plenum, 1984, p. 3–49
- Kurtz AB, Matthews JA, Nabarro JDN: Insulin-binding antibody: reaction differences with bovine and porcine insulins. *Diabetologia* 15:19–22, 1978
- Menczel J, Levy M, Bentwich Z: Insulin resistant diabetes treated with sulphated insulin. *Isr J Med Sci* 2:764
 68, 1966
- Little JA, Arnott JH: Sulfated insulin in mild, moderate, severe, and insulin-resistant diabetes mellitus. *Diabetes* 15:457–65, 1966
- 286. Davidson JK, DeBra DW: Immunologic insulin resistance. *Diabetes* 27:307–18, 1978
- 287. Naquet P, Ellis J, Kenshole A, Semple JW, Delovitch TL: Sulfated beef insulin treatment elicits CD8⁺ T cells that may abrogate immunologic insulin resistance in type I diabetes. *J Clin Invest* 84:1479–87, 1989
- 288. Brange J, Ribel U, Hansen JF, Vølund A: The significance of insulin self-association for the absorption of dissolved insulin (Abstract). *Diabetes Res Clin Pract* 5 (Suppl. 1):S609, 1988
- 289. Brange J, Ribel U, Hansen JF, Vølund A: The association state of insulin determines the rate of absorption of regular insulin (Abstract). *Diabetes* 37 (Suppl. 1):163A, 1988
- 290. Storm MC, Dunn MF: The Glu(B13) carboxylates of the insulin hexamer form a cage for Cd²⁺ and Ca²⁺ ions. *Biochemistry* 24:1749–56, 1985
- Furler SM, Kraegen EW: Quantitative aspects of subcutaneous insulin absorption. *Diabetic Med* 6:657–65, 1989
- 292. Sherwin RS, Kramer KJ, Tobin JD, Insel PA, Liljenquist JE, Berman M, Andres R: A model of the kinetics of insulin in man. *J Clin Invest* 53:1481–92, 1974
- 293. Kobayashi T, Sawano S, Itoh T, Kosaka K, Hirayama H, Kasuya Y: The pharmacokinetics of insulin after continuous subcutaneous infusion or bolus subcutaneous injection in diabetic patients. *Diabetes* 32:331–36, 1983
- 294. Fischer U, Freyse E-J, Besch W, Raschke M, Höfer S, Albrecht G: Absorption rates of subcutaneously injected insulin in the dog as calculated from the plasma insulin levels by means of a simple mathematical model. *Dia*-

- betologia 24:196-201, 1983
- Kraegen EW, Chisholm DJ: Insulin responses to varying profiles of subcutaneous insulin infusion: kinetic modelling studies. *Diabetologia* 26:208–13, 1984
- 296. Nosadini R, De Kreutzenberg S, Duner E, Iori E, Avogaro A, Trevisan R, Fioretto P, Doria A, Merkel C, Cobelli C, Mari A, Jensen I, Heding L, Crepaldi G: Porcine and human insulin absorption from subcutaneous tissues in normal and insulin-dependent diabetic subjects: a deconvolution-based approach. *J Clin Endocrinol Metab* 67:551–59, 1988
- Berger M, Rodbard D: Computer simulation of plasma insulin and glucose dynamics after subcutaneous insulin injection. *Diabetes Care* 12:725–36, 1989
- 298. Chawdhury SA, Dodson EJ, Dodson GG, Reynolds CD, Tolley SP, Blundell TL, Cleasby A, Pitts JE, Tickle IJ, Wood SP: The crystal structure of three non-pancreatic human insulins. *Diabetologia* 25:460–64, 1983
- Vora JP, Owens DR, Dolben J, Atiea JA, Dean JD, Kang S, Burch A, Brange J: Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects. *Br Med J* 297:1236–39, 1988
- 300. Kang S, Owens DR, Burch A, Jørgensen KH, Brange J: The association state of insulin determines the rate of absorption of soluble insulin in normal man (Abstract). *Diabetes* 38 (Suppl. 2):79A, 1989
- Kang S, Owens DR, Creagh FM, Williams S, Brange J, Peters JR: Effect of dimeric human insulin analogue B10Asp on meal-related glucose rises in IDDM's (Abstract). Diabetic Med 6 (Suppl. 2):8A, 1989
- Kang S, Owens DR, Creagh FM, Williams S, Brange J, Peters JR: Effect of monomeric human insulin analogue B9AspB27Glu on meal-related glucose rises in type 1 (insulin-dependent) diabetic patients (Abstract). Diabetelogia 32:502A, 1989
- Kang S, Owens DR, Vora JP, Brange J: Comparison of insulin analogue B9AspB27Glu and soluble human insulin in insulin-treated diabetes. *Lancet* 5:303–306, 1990
- 304. Robertson DA, Hale PJ, Singh BM, Krentz AJ, Jensen I, Nattrass M, Heding LG: Kinetics and metabolic effects in man of human insulin and two biosynthetic insulin analogues (Abstract). *Diabetologia* 32:533A, 1989
- Robertson DA, Hale PJ, Singh BM, Krentz AJ, Nattrass M, Jensen I: The kinetics and hypoglycaemic potency of a di-substituted biosynthetic insulin analogue (Abstract). Diabetic Med 6 (Suppl. 1):A26, 1989
- 306. Heinemann L, Starke AAR, Hohmann A, Jensen I, Heding L, Berger M: Action profiles of fast onset insulin analogues compared with regular human insulin. *Diabetologia*. In press
- Cahill GF Jr, Etzwiler DD, Freinkel N: 'Control' and diabetes. N Engl J Med 294:1004–1005, 1976
- Brownlee M, Cerami A: The biochemistry of the complications of diabetes mellitus. *Annu Rev Biochem* 50: 385–432, 1981
- Reichard P, Rosenqvist U: Nephropathy is delayed by intensified insulin treatment in patients with insulin-dependent diabetes mellitus and retinopathy. J Intern Med

- 226:81-87, 1989
- 310. Stout RW: Diabetes and atherosclerosis: the role of insulin. *Diabetologia* 16:141–50, 1979
- 311. Pyörälä K: Relationship of glucose tolerance and plasma insulin to the incidence of coronary heart disease: results from two population studies in Finland. *Diabetes Care* 2:131–41, 1979
- 312. Welborn TA, Wearne K: Coronary heart disease incidence and cardiovascular mortality in Busselton with reference to glucose and insulin concentrations. *Diabetes Care* 2:154–60, 1979
- 313. Ducimetiere P, Eschwege E, Papoz L, Richard JL, Claude JR, Rosselin G: Relationship of plasma insulin levels to the incidence of myocardial infarction and coronary heart disease mortality in a middle-aged population. *Diabetologia* 19:205–10, 1980
- 314. Orchard TJ, Becker DJ, Bates M, Kuller LH, Drash AL: Plasma insulin and lipoprotein concentrations: an atherogenic association? *Am J Epidemiol* 118:326–37, 1983
- Reaven GM, Hoffman BB: A role for insulin in the aetiology and course of hypertension? *Lancet* 2:435–36, 1987
- 316. Reaven GM: Banting lecture 1988: role of insulin resistance in human disease. *Diabetes* 37:1595–607, 1988
- 317. Zavaroni I, Bonora E, Pagliara M, Dall'Aglio E, Luchetti L, Buonanno G, Bonati PA, Bergonzani M, Gnudi L, Passeri M, Reaven G: Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. *N Engl J Med* 320:702–706, 1989
- 318. Chisholm DJ, Bruce DG, Storlien LH, Kraegen EW: Prandial insulin administration in type II diabetes. In Non-Insulin-Dependent Diabetes Mellitus. Cameron D, Colagiuri S, Heding L, Kühl C, Ma A, Mortimer R, Eds. Amsterdam, Excerpta Med., 1989, p. 127–32
- 319. Bruce DG, Chisholm DJ, Storlien LH, Kraegen EW: Physiological importance of deficiency in early prandial insulin secretion in non-insulin-dependent diabetes. *Diabetes* 37:736–44, 1988
- 320. Kannel WB, Gordon T, Shurtlef D: Some characteristics related to the incidence of cardiovascular disease and death. *The Framingham Study: An Epidemiologic Investigation of Cardiovascular Disease*. Sect. 26. Washington, DC, U.S. Govt. Printing Office, 1971 (DHEW publ. no. 0414-297)
- Garcia M, McNamara P, Gordon T, Kannel WB: Cardiovascular complications in diabetics. In Vascular and Neurological Changes in Early Diabetes. Camerini-Davalos RA, Cole HS, Eds. New York, Academic, 1973, p. 493–99
- 322. Jarrett RJ: Diabetes, hyperglycaemia and arterial disease. In *Complications of Diabetes*. 2nd ed. Keen H, Jarret RJ, Eds. London, Arnold, 1982, p. 179–203
- 323. Zavaroni I, Dall'Aglio E, Bonora E, Alpi O, Passeri M, Reaven GM: Evidence that multiple risk factors for coronary artery disease exist in persons with abnormal glucose tolerance. *Am J Med* 83:609–12, 1987

Insulin glulisine: a faster onset of action compared with insulin lispro

T. Heise, L. Nosek, H. Spitzer, L. Heinemann, E. Niemöller, A. D. Frick and R. H. A. Becker

Aim: This randomized, single-centre, double-blind, crossover study compared the pharmacodynamic and pharmacokinetic properties of two different doses of insulin glulisine (glulisine) and insulin lispro (lispro) in lean to obese subjects.

Methods: Eighty subjects without diabetes, stratified into four body mass index (BMI) classes (<25, ≥25 to <30, ≥30 to <35 and ≥35 kg/m²), were randomized to receive single injections of glulisine and lispro (0.2 and 0.4 U/kg) on four study days under glucose clamp conditions. Glucose infusion rates (GIR) and insulin (INS) concentrations were assessed for 10 h postdose.

Results: Glulisine showed a greater early metabolic action than lispro [GIR-area under the curve (GIR-AUC) between 0 and 1 h (0.2 U/kg: 102.3 ± 75.1 vs. 83.1 ± 72.8 mg/kg, p < 0.05; 0.4 U/kg: 158.0 ± 100.0 vs. 112.3 ± 70.8 mg/kg, p < 0.001)], with an earlier time to 10% of total GIR-AUC (0.2 U/kg: 1.4 ± 0.4 vs. 1.5 ± 0.4 h; 0.4 U/kg: 1.4 ± 0.3 vs. 1.5 ± 0.3 h, p < 0.05). The total metabolic effect was not different between the two insulins. In accordance with these findings, the time to 10% of total INS-AUC was faster with glulisine compared with lispro at either dose (0.2 U/kg: 0.7 ± 0.2 vs. 0.8 ± 0.2 h; 0.4 U/kg: 0.8 ± 0.2 vs. 0.9 ± 0.2 h, p < 0.001). The faster rise in insulin concentrations and the earlier onset of activity of glulisine vs. lispro was consistently observed in each individual BMI class.

Conclusions: Glulisine shows a faster onset of action than lispro, independent of BMI and dose.

Keywords: glucose clamp, insulin analogues, pharmacodynamics, pharmacokinetics

Received 20 March 2007; returned for revision 16 May 2007; revised version accepted 21 May 2007

Introduction

The therapeutic concept of 'intensified insulin therapy' aims at substituting the complex pattern of endogenous insulin secretion in people with diabetes. The aim of subcutaneous (s.c.) injections of short-acting insulin before meals is to mirror prandial insulin secretion, while the aim of retarded insulin preparations is to substitute basal insulin secretion [1,2]. Unfortunately, the time—action profile of s.c. injected regular human insulin (RHI)

shows a slow onset of action (with a peak metabolic effect approximately 3 h postdosing [3]) and a prolonged duration of action beyond 8 h [4], which impedes the attainment of good postprandial blood glucose (BG) control without suffering from late postprandial hypoglycaemia [5]. Consequently, insulin products comprising of human insulin analogues with a faster onset of action and a shorter duration of action than RHI were developed and are now widely used. These insulins, used in intensified basal-bolus insulin

Correspondence:

Tim Heise, MD, Profil Institut für Stoffwechselforschung GmbH, Hellersbergstr. 9, 41460 Neuss, Germany. E-mail:

tim.heise@profil-research.de

¹Profil Institut für Stoffwechselforschung, Neuss, Germany

²sanofi-aventis, Frankfurt/Main, Germany

regimens, enable achievement of tighter postprandial BG control, potentially resulting in improved metabolic control [6].

Insulin glulisine (glulisine) is a new, fast-acting recombinant human insulin analogue. It differs from RHI by the replacement of asparagine at position B3 by lysine, and lysine at position B29 by glutamic acid (Lys[B3], Glu[B29] human insulin). Glulisine, like other rapid-acting insulin analogues, displays a more rapid onset of action and a shorter duration of action vs. RHI [7], leading to improved postprandial BG concentrations [8] and better overall diabetes control [9].

Time-action profiles of currently available s.c. insulin products are prolonged with higher doses, and attenuated and delayed in obese subjects [10,11], which is unwanted. This phenomenon is most pronounced with RHI, which has a substantially longer duration of action with higher doses [4] and is particularly evident in subjects with a high body weight. These subjects not only have to inject higher insulin doses to obtain the same amount of insulin units per kilogram body weight, but also have to compensate for the insulin resistance associated with obesity. Fast-acting insulin analogues such as insulin aspart (aspart) and insulin lispro (lispro) also last longer when injected at higher doses [4,12], although for substantially less time compared with RHI. In a recent manual euglycaemic clamp study, glulisine was shown to have shorter times to onset of activity compared with lispro in non-diabetic, obese [body mass index (BMI) 30-40 kg/m²] subjects [13]. Indeed, in that study, lispro displayed a delayed action profile compared with glulisine, as indicated by smaller fractional areas under the glucose infusion rate curve (GIR-AUCs) and longer time to 20% of total glucose disposal (GIR $t_{20\%}$) (p = 0.025 at 2 h). In view of the potential clinical importance of this finding, this single-centre, randomized, double-blind, four-way, crossover study was carried out to characterize the observed differences in the pharmacokinetic (PK) and pharmacodynamic (PD) properties of glulisine and lispro in a population with a wider range of BMIs. This Biostator-supported euglycaemic clamp study focussed on early exposure and action with a standard dose of 0.2 U/kg and with 0.4 U/ kg as a high dose.

Methods

The study was conducted from 13 April 2004 to 21 October 2004 in accordance with the ethical principles of the Declaration of Helsinki and of Good Clinical Practice. The clinical study protocol, informed consent documents and other appropriate study-related documents were

reviewed and approved by an independent ethics committee, and all subjects provided written informed consent

The study was performed in a single centre, in male and female subjects without diabetes, aged 18-65 years, with haemoglobin A_{1c} levels in the normal range. Subjects were stratified by BMI as follows: <25 kg/m² (lean), >25 to $<30 \text{ kg/m}^2$ (overweight), $\ge 30 \text{ to } <35 \text{ kg/m}^2$ (moderately obese) and $\geq 35 \text{ kg/m}^2$ (severely obese). Subjects were not receiving any regular concomitant treatment with prescribed drugs on entry of the study and in the 4 weeks before screening, with the exception of oral contraceptive agents in female subjects. Subjects received either 0.2 or 0.4 U/kg of glulisine or lispro, in a randomized, double-blind order, on four separate treatment days under euglycaemic clamp conditions. The commercial products of glulisine and lispro were supplied by Aventis Pharma Deutschland GmbH (Bad Soden, Germany). A randomization schedule (generated under the directive of the Department of Biometrics and Data Management, Aventis Pharma Deutschland GmbH) linked sequential subject numbers to treatment sequence codes allocated at random.

Subjects fasted overnight prior to the day of receiving study treatment. In the morning of each of the trial days, subjects were admitted to the research institute and connected to a Biostator [glucose-controlled insulin infusion system; MTB Medizintechnik, Ulm, Germany]. After a baseline period of 90 min, the study medication was administered by s.c. injection into the periumbilical region of the abdomen using a standardized skinfold technique and a 1 ml syringe with a needle length of 12 mm. Injection sides were changed between 5 cm left and 5 cm right of the umbilicus from experiment to experiment. The study medication was administered preferably by the same physician (only in exceptional case by a substitute) at all treatment sessions.

The Biostator measured BG continuously and automatically adjusted the infusion rate of a 20% glucose solution every minute to maintain BG levels at 10% below the individual fasting BG concentrations (determined as the mean of the three BG values measured 60, 30 and 5 min before study drug administration). The Biostator also automatically initiated and calculated GIR. The glucose clamp lasted for 10 h postdosing. Venous blood samples for determination of insulin glulisine and insulin lispro concentrations in serum were collected at the following times: $-90, -60, -30, 0, 10, 20, 30, 40, 50, 60, 90, 120, 150, 180, 210, 240, 270, 300, 360, 420, 480, 540 and 600 min. Additionally, blood samples were taken at intervals of <math display="inline">\leq 30$ min for BG measurements with a laboratory device using the glucose-oxidase method (Super GL Ambulance

OA

glucose analyser; Hitado Diagnostic Systems, Möhnesee, Germany) to readjust the Biostator BG measurements, if necessary. Subjects remained fasted during the entire glucose clamp period.

Venous blood samples for determination of serum C-peptide concentrations were collected at the following times: -90, 0, 60, 120, 180, 240, 300, 360, 420, 480, 540 and 600 min. A conventional radioimmunoassay (RIA) was used to measure serum C-peptide concentrations (Immulite C-Peptide; EURO/DPC, Llanberis, UK).

RIAs specific for glulisine and lispro (competitive-binding RIA; supplied by Linco Research, St Charles, MO, USA) were used to determine the concentrations in serum. Duplicate measurements were performed using a Cobra II series 5010 multidetector auto-gamma counting device (Packard, Meriden, CT, USA). Interbatch accuracy ranged from 94 to 112% for glulisine and from 93 to 108% for lispro. The interbatch precisions were 3.1–8.8 CV% (glulisine) and 2.4–7.2 CV% (lispro). For glulisine, the lower limit of quantification (LLOQ) was set at 5.0 $\mu\text{U}/\text{ml}$, the upper limit of quantification (ULOQ) at 150 $\mu\text{U}/\text{ml}$. The respective values for lispro were 10.0 $\mu\text{U}/\text{ml}$ (LLOQ) and 175 $\mu\text{U}/\text{ml}$ (ULOQ).

Statistical Methods

PD parameters were derived from the individual GIR profiles, and PK parameters from the serum lispro and glulisine concentrations (INS). AUCs were calculated from untransformed data with the trapezoidal rule. Maximum insulin concentration (INS $_{max}$) and the time to INS $_{max}$ (INS-T_{max}) were taken as observed, while maximum metabolic activity (GIR_{max}) and the time to GIR_{max} (GIR-T_{max}) were taken from GIR profiles smoothed with a weighted regression technique (procedure LOESS in SAS, SAS Institute, Cary, NC, USA). All PD parameters pertaining to GIR-AUCs as well as GIR_{max}, and all PK parameters pertaining to INS-AUCs as well as INS_{max}, were analysed (PK parameters after a natural logtransformation) using an analysis of variance model, which included insulin type, dose regimen, BMI group, period and sequence as main factors, a nested factor for subjects and interaction terms, to allow the estimation of least square (LS) means of interest.

For treatment comparisons, based on the LS means from this model, point estimates and corresponding 95% CI were calculated for either differences between parameters (PD) or ratios of parameters (PK). All timerelated parameters [INS-T_{max}, GIR-T_{max}, 10% of total INS (INS-t_{10%}), GIR-t_{10%}] were subject to distribution-free (non-parametric) analyses (Wilcoxon signed-rank test). Point estimates (median) with corresponding 95%

CI were calculated for the differences between treatment parameters.

The sample size in this study was based on the results of a previous trial [13] investigating the PD and PK properties of glulisine in obese, non-diabetic subjects with a BMI >30 kg/m² (mean BMI 34.7 kg/m²). A sample size of 18 subjects per BMI group in that trial was estimated to give the study a power of >80% to detect a clinically significant difference between BMI groups for glulisine in onset of action at a significance level of $\alpha < 0.05$ in a double-sided comparison. Therefore, assuming a dropout rate of approximately 10% per group, a sample size of 20 subjects per BMI group was chosen for this current study. Dropouts were only to be replaced if there were more than two dropouts in one BMI group. This sample size was larger than usual for PD/PK trials to ensure that even small differences in the PD/PK properties of glulisine between subjects with different BMIs were captured.

Results

Subjects

A total of 114 subjects were screened. Of these, 83 subjects met the inclusion criteria, were randomized, received at least one dose of study medication and were included in the safety analyses. Three subjects discontinued before study completion: one after receiving 0.4 U/kg glulisine because of adverse events possibly related to study medication (eyelid and peripheral oedema), one because of a protocol violation and one because of the person's own decision. According to the protocol, these subjects were replaced by three substitutes who received the same treatment sequence as the replaced subjects. In total, 80 subjects, distributed evenly between the BMI groups (20 subjects per group), were included in the PK and PD analyses. There were no relevant differences between the BMI groups with respect to age and gender distribution (table 1). The overall mean baseline BG value for the entire study population was 84 ± 7 mg/dl; baseline BG values were similar for all administered treatment sequences, with no major differences between the BMI groups.

Pharmacodynamics

Both analogues showed comparable overall glucodynamic efficacy (GIR-AUC $_{0-10 \text{ h}}$) (figure 1) and GIR $_{\text{max}}$ at either dose (table 2). While GIR- T_{max} was comparable between the analogues, the onset of action was significantly faster for glulisine, as indicated by the significantly less time to achieve 10% of GIR-AUC $_{0-10 \text{ h}}$ (GIR- $t_{10\%}$) with glulisine, thus showing higher efficacy

Table 1 Baseline demographics

Variable	BMI (kg/m²)					
	All	<25	≥25 to <30	≥30 to <35	>35	
Male, n (%)	42 (52.5)	8 (40)	12 (60)	12 (60)	10 (50)	
Female, n (%)	38 (47.5)	12 (60)	8 (40)	8 (40)	10 (50)	
Age (years)	38.8 ± 9.8	37.6 ± 9.8	39.0 ± 9.4	39.7 ± 12.0	39.0 ± 8.4	
Height (cm)	173.5 ± 8.9	171.5 ± 10.0	175.2 ± 6.9	175.1 ± 9.0	172.5 ± 9.2	
Weight (kg)	91.6 ± 21.3	68.4 ± 11.9	83.2 ± 6.8	98.2 ± 9.8	116.6 ± 15.9	
BMI (kg/m²)	30.3 ± 6.4	23.1 ± 2.1	27.1 ± 1.3	32.0 ± 1.1	39.1 ± 3.5	

Data are given as mean \pm s.d., except for gender distributions. BMI, body mass index.

in the first hour postdosing (GIR-AUC₀₋₁ h; table 2). Correspondingly, the significantly greater ratio of GIR-AUC₀₋₁ h/GIR-AUC₀₋₁₀ h with glulisine showed a significantly higher proportion of total metabolic activity occurring in the first hour postdosing for glulisine when compared with lispro (figure 2).

The faster onset of action with glulisine was not limited to any specific BMI group or to one dose. As shown in table 2 and figure 2, the PD parameters for onset of action showed significant differences between treatments for both 0.2 and 0.4 U/kg, and in nearly all BMI groups, although not all differences in the individual BMI groups reached statistical significance. However, no statistically significant (p > 0.1) interaction between insulin type and BMI group was observed for any PD

parameter; thus, the observed differences were consistent across BMI subgroups.

Pharmacokinetics

The PK parameters derived from the lispro and glulisine concentrations for the total study population are listed in table 2. Higher maximum serum analogue concentrations and greater total area under the concentration time curves were measured with glulisine compared with lispro (for INS-AUC $_{0-10~h}$ by approximately 40%; figure 1). However, because the total metabolic responses were comparable between treatments and the absolute bioavailabilities of glulisine and lispro are similar (approximately 70% [14,15]), the differences in insulin

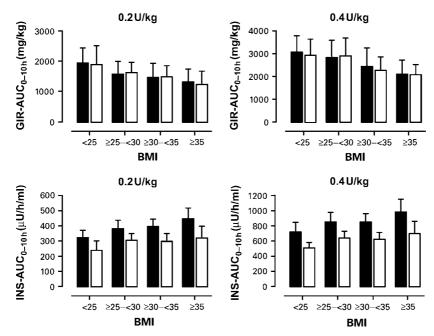


Fig. 1 Mean and s.d. for total glucose disposal (upper panel) and insulin exposure (lower panel) at 0.2 and 0.4 U/kg. Black bar = insulin glulisine; white bar = insulin lispro. BMI, body mass index; AUC, area under the curve; GIR, glucose infusion rate; INS, insulin.

OA

Table 2 Pharmacodynamic and pharmacokinetic results

Variable	BMI (kg/m²)	Insulin glulisine (0.2 U/kg)	Insulin lispro (0.2 U/kg)	Insulin glulisine (0.4 U/kg)	Insulin lispro (0.4 U/kg)
Pharmacodynamics	_	-	_	-	
GIR-AUC _{0-10 h} (mg/kg)	All	1569 ± 521	1554 ± 512	2564 ± 811	2459 ± 760
GIR-AUC _{0-1 h} (mg/kg)	All	$102 \pm 75*$	83 ± 73	$158 \pm 100 \dagger$	112 ± 71
GIR-AUC _(0-1 h) (%)	All	$6.4\pm3.9\dagger$	5.1 ± 3.9	6.1 ± 3.3†	4.5 ± 2.6
GIR-AUC _(0-10 h) (76)	<25	9.8 ± 3.9	9.2 ± 4.6	$9.2\pm3.4\dagger$	7.0 ± 2.9
	≥25 to <30	$6.8\pm2.3\dagger$	4.8 ± 2.7	5.7 ± 2.0	4.5 ± 1.1
	≥30 to <35	$4.9 \pm 3.7*$	3.6 ± 2.5	$5.7\pm3.2\dagger$	3.3 ± 2.1
	≥35	$4.0 \pm 2.9*$	2.7 ± 1.8	3.7 ± 1.7	3.1 ± 1.7
GIR-t _{10%} (min)	All	83 ± 26*	87 ± 23	85 ± 20*	88 ± 18
GIR _{max} (mg/kg/min)	All	5.8 ± 2.1	5.9 ± 2.6	8.4 ± 2.9	8.3 ± 3.0
GIR-T _{max} (min)	All	190 ± 75	171 ± 53	196 ± 73	198 ± 65
Pharmacokinetics					
INS-AUC _{0-10 h} (μ U/h.ml)	All	$385\pm69\dagger$	281 ± 68	842 ± 158†	603 ± 129
INS-AUC _{0-1 h} (μ U/h.ml)	All	$70\pm24\dagger$	47 ± 22	$135 \pm 56\dagger$	84 ± 34
INS-AUC _(0-1 h) (%)	All	18.8 ± 7.4*	17.4 ± 8.8	16.6 ± 7.8†	14.5 ± 7.0
INS-AUC _(0-10 h)	<25	26.4 ± 6.7	27.4 ± 9.0	25.4 ± 8.0	22.6 ± 6.7
	≥25 to <30	$19.9 \pm 5.8*$	17.1 ± 5.7	17.0 ± 4.7*	13.4 ± 3.8
	≥30 to <35	15.6 ± 5.6	14.0 ± 5.2	$12.9 \pm 5.3*$	11.3 ± 5.5
	≥35	$13.2 \pm 3.5*$	11.3 ± 4.8	10.9 ± 3.1	10.8 ± 4.5
INS-t _{10%} (min)	All	44 ± 11†	50 ± 14	49 ± 14†	54 ± 12
INS _{max} (μU/mI)	All	115.2 ± 27.8*	95.9 ± 28.4	234.8 ± 68.5*	185.0 ± 51.7
INS-T _{max} (min)	All	94 ± 42	76 ± 39	100 ± 40	92 ± 38

Data are given as mean \pm s.d.

Test statistics were performed using an ANOVA model for the normally distributed pharmacodynamic parameters: $GIR-AUC_{0-1 h}$, $GIR-AUC_{0-10 h}$ and GIR_{max} . The pharmacokinetic parameters INS-AUC_{0-1 h}, INS-AUC_{0-10 h} and INS_{max} were analysed with the same ANOVA model after a natural log-transformation. All time-related parameters (INS- T_{max} , $GIR-T_{max}$, $INS-t_{10\%}$, $GIR-t_{10\%}$) were tested with non-parametric analyses (Wilcoxon signed-rank test). Please refer to the Statistical Methods for further details.

ANOVA, analysis of variance; BMI, body mass index; AUC, area under the curve; GIR, glucose infusion rate; GIR- $t_{10\%}$, time to 10% of GIR- $AUC_{0-10~h}$; GIR $_{max}$, maximum GIR; GIR- t_{max} , time to GIR $_{max}$; INS, insulin; INS- $t_{10\%}$, time to INS- $AUC_{0-10~h}$; INS $_{max}$, maximum INS concentration; INS- t_{max} , time to INS $_{max}$.

exposure are considered artefactual and are because of differences in the cross-reactivity to human insulin between the analogue-specific kits used for analysis. Taking this into consideration, the PK parameters explain the PD findings. The absorption of glulisine was significantly faster than that of lispro in the total study population, indicated by the lesser time required to achieve early exposure with glulisine (INS-t10% approximately 5-6 min less), resulting in a greater INS-AUC0-1 h/INS-AUC0-10 h ratio (table 2; figure 2). The difference in INSt_{10%} was statistically significant across the BMI ranges with both doses; except for 0.4 U/kg in morbidly obese subjects (figure 1). The difference in INS-t20% also tended to be in favour of glulisine (p = 0.058 for 0.2 U/kg and p = 0.151 for 0.4 U/kg), although this did not translate into significant differences in GIR-t_{20%}. Moreover, insulin exposure (INS-AUC_{0-10 h} and INS_{max}) increased as BMI increased, while glucose disposal (GIR-AUC $_{0-10\;\mathrm{h}}$ and GIR_{max}) decreased with both insulin analogues (figure 1).

There were no significant differences in mean C-peptide concentrations between glulisine and lispro (data not shown). No relevant increases above baseline levels were observed in any of the clamps for this variable with either treatment, indicating that the study results were not influenced by changes in endogenous insulin secretion.

No relevant changes in the safety laboratory variables and no serious adverse events were observed with either treatment or dose, apart from decreases in erythrocyte, haemoglobin and haematocrit measurements, which were attributed to the frequent blood sampling during the study.

Discussion

This study compared the pharmacological properties of the two fast-acting insulin analogues, glulisine and lispro in subjects without diabetes, over a wide BMI range. Two different doses were used in this study, 0.2 U/kg as a standard dose and 0.4 U/kg as a high dose. Both analogues showed comparable overall glucodynamic efficacy

^{*}p < 0.05; †p < 0.001 vs. corresponding insulin lispro/BMI group.

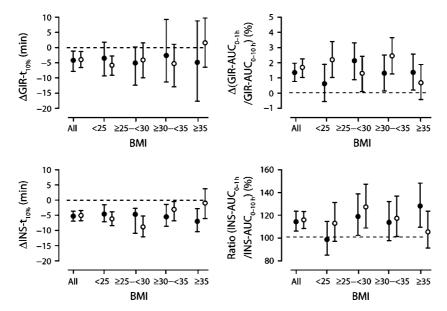


Fig. 2 Point estimates with 95% confidence limits for pharmacodynamic (upper panel) and pharmacokinetic (lower panel) parameters. Black circles = 0.2 U/kg; white circles = 0.4 U/kg. The plots show differences between insulin glulisine and insulin lispro or the ratio of insulin glulisine over insulin lispro. BMI, body mass index; AUC, area under the curve; GIR, glucose infusion rate; GIR- $t_{10\%}$, time to 10% of GIR-AUC $_{0-10}$ h; INS, insulin; INS- $t_{10\%}$, time to INS-AUC $_{0-10}$ h.

(GIR-AUC_{0-10 h}), GIR-T_{max} and GIR_{max} at either dose. However, as shown by the greater ratio of GIR-AUC_{0-1 h}/GIR-AUC_{0-10 h} with glulisine, a significantly higher proportion of total metabolic activity occurred in the first hour postdosing for glulisine compared with lispro (figure 2). This is also reflected in the higher efficacy in the first hour postdosing (GIR-AUC_{0-1 h}) and accompanied by a faster onset in activity shown by significantly reduced GIR-t_{10%} with glulisine.

This finding confirms the observations of a previous glucose clamp study performed in obese subjects without diabetes, with a BMI of 30–40 kg/m², which also reported a faster rise in insulin concentration and a faster onset of action with glulisine than with lispro [13]. The present study with 320 euglycaemic glucose clamp experiments expands these findings to subjects with a BMI range of 20–40 kg/m². As no treatment by BMI interaction was shown for any PD parameter (p > 0.1), the statistical significance of these treatment differences established for the total study population can be generalized, i.e. the earlier onset of action of glulisine occurs in both lean and obese (and even morbidly obese) subjects.

Fast-acting insulin analogues have been compared for differences in PD and PK properties for clinical implications soon after their advent. For instance, Hedman *et al.* reported a faster rise and an earlier decline in insulin concentrations with lispro compared with aspart [16]. These differences in PK properties, observed in 14

patients with type 1 diabetes were not, however, accompanied by any differences in postprandial BG concentrations after a standard meal. Furthermore, other studies with more patients [17] or more complex methods [18] did not show any significant differences (in either PK or PD) between aspart and lispro. Thus, our confirmation of previous findings [13] of the faster onset of action of glulisine vs. lispro might be surprising, but may be because of the absorption processes of both insulins. The drug formulation of glulisine differs from those of lispro and aspart; glulisine is stable with polysorbate 20, whereas the other analogues need to be formulated with zinc [19]. Zinc is added to stabilize insulin molecules in hexamers (with two zinc atoms located in the centre of the hexamer) to achieve a practical shelf life [20]. Although lispro is more rapidly absorbed from pure monomeric solution compared with hexameric lispro (the prevalent form in the commercially available product), it lacks sufficient shelf life and in-use stability [15,21]. The oligomeric aggregates of glulisine molecules in solution are adequately stable without zinc, presumably because of the unaltered proline at position B28 allowing dimerization [22,23]. Thus, it is plausible to attribute the observed moderate disparity in early absorption and metabolic action between glulisine and lispro to differences in the association status of the insulin molecules. This is linked to the physicochemical properties of their formulations.

OA

As the difference between glulisine and other fast-acting analogues manifests in the zinc-free formulation of glulisine, the faster onset of action should be evident in all subjects (subjects without diabetes, subjects with type 1 or type 2 diabetes, lean or obese subjects). The fact that such a difference between glulisine and lispro was not observed in a previous study in subjects with type 2 diabetes [7] is probably because of the insufficient power of that study, which used an incomplete block design and thereby increased the variability between the treatment groups studied.

The imminent question regarding the clinical relevance of the observed faster onset of action of glulisine is a difficult one. While being statistically significant, the absolute difference, although small (e.g. INS-t_{10%} differed only by 5-6 min), afforded a 25-30% greater glucose disposal within the first hour after injection. In a previous study, the difference in the onset of action (expressed as the time to reach half-maximal activity) between aspart and RHI was reported to be not more than 13 min [24], indicating that the onset of action of glulisine might be meaningfully faster than that of the other fast-acting analogues. The clinical relevance of such findings has to be shown in adequately designed clinical studies. The only clinical study available so far with a head-to-head comparison between glulisine and lispro was conducted in patients with type 1 diabetes and did not show any difference in glycated haemoglobin or incidence of hypoglycaemic events between the analogues [25]. However, less basal insulin was required with glulisine as compared with lispro. This adds to the conclusion that improved PK/PD properties of new prandial insulins need to be accompanied by adaptations in the basal insulin regimen before leading to an improvement in overall metabolic control [6].

While the faster onset of action of glulisine was evident in all BMI subgroups in this study, it might be of highest clinical relevance in obese subjects. Previous findings report significantly delayed absorption in obese subjects [10,11], and a negative correlation of absorption and action with fat layer thickness for s.c. injection of RHI [26,27]. We observed a modest decrease in INS-AUC_{0-10 h} ratio (figure 2) at increasing total absorption, INS-AUC_{0-10 h} (figure 1), with increasing BMI. Nevertheless, insulin resistance, a characteristic feature of obesity [28], is closely associated with the amount of visceral fat [26,29,30], and leads to an attenuation of the metabolic activity of any insulin product, as also shown in this study for both glulisine and lispro.

Thus, both attenuated absorption and reduced metabolic activity have to be accounted for in obese people because the time—action profile of s.c. RHI is shifted to the right and shows less peak activity compared with lean subjects. For these patients, it may be of particular importance to use the insulin analogue with the most rapid onset of action to counteract the right-shift in the insulin time—action profiles.

In conclusion, our study confirms previous observations of a faster onset of action of glulisine as compared with lispro. This faster onset of action of glulisine, which is associated with the novel drug formulation, is evidently independent of the insulin dose and the subjects' BMI.

Acknowledgements

This study was sponsored by sanofi-aventis. The authors would like to thank Matthias Axel-Schweitzer, MD – an employee of Aventis Pharma Deutschland GmbH, Bad Soden, Germany at the time of the study – for his valuable support with the study.

References

- 1 Berger M, Muhlhauser I. Implementation of intensified insulin therapy: a European perspective. Diabet Med 1995; 12: 201–208.
- 2 Hirsch IB, Farkas-Hirsch R, Skyler JS. Intensive insulin therapy for treatment of type I diabetes. Diabetes Care 1990; 13: 1265–1283.
- 3 Heinemann L, Chantelau EA, Starke AA. Pharmacokinetics and pharmacodynamics of subcutaneously administered U40 and U100 formulations of regular human insulin. Diabete Metab 1992; 18: 21–24.
- 4 Nosek L, Heinemann L, Kaiser M, Arnolds S, Heise T. No increase in the duration of action with rising doses of insulin aspart (Abstract). Diabetologia 2003; 46: A268.
- 5 Berger M, Heinemann L. Are presently available insulin analogues clinically beneficial? Diabetologia 1997; 40 (Suppl. 2): S91–S96.
- 6 Heise T, Heinemann L. Rapid and long-acting analogues as an approach to improve insulin therapy: an evidence-based medicine assessment. Curr Pharm Des 2001; 7: 1303–1325.
- 7 Becker RH, Frick AD, Kapitza C, Heise T, Rave K. Pharmacodynamics (PD) and pharmacokinetics (PK) of insulin glulisine compared with insulin lispro (IL) and regular human insulin (RHI) in patients with type 2 diabetes (Abstract). Diabetes 2004; 53 (Suppl. 1): 503P.
- 8 Rave K, Klein O, Frick AD, Becker RH. Advantage of premeal-injected insulin glulisine compared with regular human insulin in subjects with type 1 diabetes. Diabetes Care 2006; 29: 1812–1817.
- 9 Dailey G, Rosenstock J, Moses RG, Ways K. Insulin glulisine provides improved glycemic control in patients

- with type 2 diabetes. Diabetes Care 2004; **27:** 2363–2368.
- 10 Vora JP, Burch A, Peters JR, Owens DR. Relationship between absorption of radiolabeled soluble insulin, subcutaneous blood flow, and anthropometry. Diabetes Care 1992; 15: 1484–1493.
- 11 Vora JP, Burch A, Peters JR, Owens DR. Absorption of radiolabelled soluble insulin in type 1 (insulin-dependent) diabetes: influence of subcutaneous blood flow and anthropometry. Diabet Med 1993; 10: 736–743.
- 12 Heinemann L, Woodworth JR. Insulin lispro; chapter III: pharmacokinetics and glucodynamics of insulin lispro. Drugs of Today 1998; **34** (Suppl. C): 23–36.
- 13 Becker RH, Frick AD, Burger F, Potgieter JH, Scholtz H. Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese nondiabetic subjects. Exp Clin Endocrinol Diabetes 2005; 113: 435–443.
- 14 Frick AD, Becker RH, Wessels D, Scholtz H. Pharmacokinetic and glucodynamic profiles of insulin glulisine following subcutaneous administration at various injection sites (Abstract). Diabetes 2006; 52 (Suppl. 1): A119.
- 15 Howey DC, Bowsher RR, Brunelle RL, Woodworth JR. [Lys(B28), Pro(B29)]-human insulin. A rapidly absorbed analogue of human insulin. Diabetes 1994; 43: 396–402.
- 16 Hedman CA, Lindstrom T, Arnqvist HJ. Direct comparison of insulin lispro and aspart shows small differences in plasma insulin profiles after subcutaneous injection in type 1 diabetes. Diabetes Care 2001; 24: 1120–1121.
- 17 Plank J, Wutte A, Brunner G et al. A direct comparison of insulin aspart and insulin lispro in patients with type 1 diabetes. Diabetes Care 2002; 25: 2053–2057.
- 18 Homko C, Deluzio A, Jimenez C, Kolaczynski JW, Boden G. Comparison of insulin aspart and lispro: pharmacokinetic and metabolic effects. Diabetes Care 2003; 26: 2027–2031.
- 19 Becker RH. Insulin glulisine complementing basal insulins: a review of structure and activity. Diabetes Technol Ther 2007; 9: 109–121.

- 20 Brange J. Galenics of Insulin: The Physico-chemical and Pharmaceutical Aspects of Insulin and Insulin Preparations. Springer-Verlag, Berlin, Germany, 1987; 1–103.
- 21 Bakaysa DL, Radziuk J, Havel HA *et al.* Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex. Protein Sci 1996; **5**: 2521–2531.
- 22 Zoete V, Meuwly M, Karplus M. Study of the insulin dimerization: binding free energy calculations and perresidue free energy decomposition. Proteins 2005; 61: 79–93.
- 23 Richards JP, Stickelmeyer MP, Flora DB, Chance RE, Frank BH, DeFelippis MR. Self-association properties of monomeric insulin analogs under formulation conditions. Pharm Res 1998; 15: 1434–1441.
- 24 Heinemann L, Heise T, Jorgensen LN, Starke AA. Action profile of the rapid acting insulin analogue: human insulin B28Asp. Diabet Med 1993; 10: 535–539.
- 25 Dreyer M, Prager R, Robinson A *et al.* Efficacy and safety of insulin glulisine in patients with type 1 diabetes. Horm Metab Res 2005; **37**: 702–707.
- 26 Rave K, Nosek L, Heinemann L, Frick A, Becker R, Kapitza C. Dependency of the metabolic effect of scinjected human regular insulin on intra-abdominal fat in patients with type 2 diabetes. Horm Metab Res 2004; 36: 307–311.
- 27 Sindelka G, Heinemann L, Berger M, Frenck W, Chantelau E. Effect of insulin concentration, subcutaneous fat thickness and skin temperature on subcutaneous insulin absorption in healthy subjects. Diabetologia 1994; 37: 377–380.
- 28 Firth R, Bell P, Rizza R. Insulin action in non-insulin-dependent diabetes mellitus: the relationship between hepatic and extrahepatic insulin resistance and obesity. Metabolism 1987; 36: 1091–1095.
- 29 Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev 1994; 74: 761–811.
- 30 Gautier JF, Mourier A, de Kerviler E *et al.* Evaluation of abdominal fat distribution in noninsulin-dependent diabetes mellitus: relationship to insulin resistance. J Clin Endocrinol Metab 1998; **83**: 1306–1311.

A Comparison of the Steady-State Pharmacokinetics and Pharmacodynamics of a Novel Rapid-Acting Insulin Analog, Insulin Glulisine, and Regular Human Insulin in Healthy Volunteers Using the Euglycemic Clamp Technique

R. H. A. Becker¹

A. D. Frick¹

F. Burger²

H. Scholtz²

J. H. Potgieter²

Abstract

Insulin glulisine is a new rapid-acting insulin analog. The aim of this study was to assess the glucodynamic efficacy of insulin glulisine compared with regular human insulin (RHI) using a manual euglycemic clamp technique. Steady-state pharmacokinetics of insulin glulisine, and its cardiac safety (ECG) and tolerability after intravenous administration, were also determined. This was a single center, randomized, open-label, two-way crossover study in healthy male subjects (n = 16). At the treatment visits subjects received an intravenous infusion of the study drug at a rate of 0.8 mU kg⁻¹⋅min⁻¹ for 2 hours. Individual baseline glucose concentrations were targeted for euglycaemia and maintained with a manual adjusted 20% glucose solution over the clamp period of a maximum 6 hours. A glulisine-specific antibody was used to quantify glulisine concentrations by radioimmunoassay, while a non-specific insulin antibody and C-peptide based correction for endogenous insulin was used to estimate exogenous human insulin (RHI). At steady state (90 - 120 min), insulin glulisine and RHI had equivalent glucose utilization (GIR-AUC_{SS}, 214 mg·kg⁻¹ for glulisine, 209 mg·kg⁻¹ for RHI) and infusion rates (GIR_{SS}, 1050 and 995 mg·min⁻¹·kg⁻¹). Both insulins also presented equal total glucose disposal (GIR-AUC_{0-clamp end}, 1050 and 995 mg·kg⁻¹) and onset of activity within 20 min. Insulin glulisine and RHI showed parallel time concentration profiles with similar distribution and elimination, but the different antibodies employed for radioimmunoassay impeded a quantitative comparison. There were no noteworthy individual or withingroup changes in cardiac repolarisation parameters measured by 12-lead ECG during insulin glulisine infusion. In conclusion, insulin glulisine and RHI show similar distribution and elimination profiles and equivalent glucodynamic efficacy on a molar, unit-per-unit basis.

Key words

Insulin glulisine \cdot regular human insulin \cdot rapid-acting insulin analog \cdot molar efficacy

Introduction

Tight glycemic control is the aim of diabetes treatment with basal-bolus insulin regimens (DCCT, 1993; UKPDS, 1998), and insulin analogs are increasingly accepted for both prandial and inter-prandial control of blood glucose (Owens et al., 2001).

Insulin glulisine (3 B-Lys-29 B-Glu-insulin) is a new insulin analog (Hennige et al., 1999) designed to provide the same total glucodynamic effect as regular human insulin (RHI), with a shorter duration of action when given subcutaneously (Becker et al., 2003). Insulin glulisine differs from RHI by the replacement of asparagine with lysine at position 3, and of lysine by glutamic

Affiliation

- ¹ Aventis Pharma Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
- ² FARMOVS PAREXEL (Pty) Ltd, Private Bag X09, Brandhof 9324, Bloemfontein, South Africa

This study was performed at FARMOVS-PAREXEL (Pty) Ltd., Bloemfontein, Republic of South Africa. This study was sponsored by Aventis Pharmaceuticals.

Correspondence

Dr. Reinhard H. A. Becker · Aventis Pharma Deutschland GmbH · Industriepark Höchst · 65926 Frankfurt am Main · Germany · T + 49(0)693054275 · F + 49(0)6930580480 · E-mail: Reinhard.Becker@aventis.com

Received: August 10, 2004 · First decision: August 28, 2004 · Accepted: April 11, 2005

Bibliography

Exp Clin Endocrinol Diabetes 2005; 113: 292 – 297 © J. A. Barth Verlag in Georg Thieme Verlag KG · Stuttgart · New York · DOI 10.1055/s-2005-865637 ·

ISSN 0947-7349

acid at position 29, on the B-chain of the human insulin molecule. These alterations favor formation of stable monomers, which is key to the rapid absorption from subcutaneous tissue (Brange et al., 1990; Brange et al., 1988; Brems et al., 1992; Kang et al., 1991).

The aim of the present study was to assess the glucodynamic efficacy of insulin glulisine compared with RHI, during intravenous administration of equimolar doses to healthy volunteers using the manual euglycemic clamp technique. Additionally, steady-state pharmacokinetics was evaluated. Further, the safety and tolerability of insulin glulisine after intravenous administration were studied.

Materials and Methods

Study design

This study was a single center, randomized, open-label, two-way crossover design in healthy male subjects whose characteristics are shown in Table 1.

Ethics

This study was conducted in accordance with Good Clinical Practice and conformed to the ethical principles of the Declaration of Helsinki. All study documentation was reviewed and approved by an independent Ethics Committee and the national health authority of South Africa. Prior to screening, and before admittance to the clinical study, all subjects gave written informed consent.

Study protocol

The study consisted of four trial periods: 0 (screening), 1 and 2 (treatment) separated by a minimum 7-day wash-out period, and 3 (follow-up). Trial period 1 took place within 28 days of period 0, and trial period 3 took place no more than 7 days after trial period 2.

The subjects fasted from the evenings prior to treatment visits after a carbohydrate-rich meal until the end of the clamp procedure. About 2 hours prior to study mediaction, subjects were prepared with a retrograde dorsal vein cannula in one hand, which was kept at about 55 °C with a thermostatic electric blanket to achieve arterialization of venous blood. This cannula was used to collect samples for determination of blood glucose, insulin, and C-peptide. A cannula in the contralateral forearm was used for infusion of glucose and study medication. From one hour prior to study medication, which comprised the pre-medication baseline period, until end of clamp, subjects remained in a semi-recumbent position.

Starting at about 08:00 a.m., subjects received a 2-hour continuous intravenous infusion of either insulin glulisine or RHI, at a rate of $0.8 \, \text{mU/kg/min}$, as randomized for cross-over at subsequent visits.

Aventis Pharmaceuticals supplied insulin glulisine and RHI. Infusion solutions were prepared by diluting stock solutions ($100\,U/mL$) in $114\,mL$ isotonic saline solution (0.9%), to which $5\,mL$ of the subjects own blood was added, such that each subject receiv-

ed 0.096 U/kg in 2 hours with a high precision pump (IVAC P2000, Basingstoke, UK).

Four arterialized venous blood samples were taken for the determination of baseline blood glucose, at 60, 30, 15 and 0 minutes prior to start of study medication infusion. Prompted by a 10% drop from its mean baseline blood glucose concentration in response to study medication infusion, a manual adjusted infusion of a 20% glucose solution was started to restore and maintain the subject's individual baseline blood glucose level. To this end, blood glucose was determined every 5 minutes throughout the clamp period, which lasted a maximum of 6 hours, or ended when the glucose infusion rate decreased to zero over a period of 15 minutes.

Further blood samples were taken prior to infusion of study medication and at 15-minute intervals during the entire clamp period in order to determine serum insulin and serum C-peptide concentrations. Blood samples for the determination of potassium concentration were taken immediately prior to the start of infusion of study medication, and again at 90 and 120 minutes thereafter.

Vital signs were assessed prior to, and immediately after, the euglycemic clamp period. Subjects received a meal, and were discharged from the study clinic after the investigator had ensured their safety, which had to be confirmed at a follow-up visit, 24 hours thereafter.

Pharmacodynamic assessments

Efficacies of insulin glulisine and RHI were assessed using glucose utilization at steady state, which was assumed for the period 90 – 120 minutes. The area under the GIR time curve at steady state (GIR-AUC_{SS}) was the primary measure, and glucose-infusion rate at steady state (GIR_{SS}) a secondary measure. The area under the entire GIR time curve (GIR-AUC_{0-clamp end}; total glucose disposal) was also assessed. All variables were adjusted by dividing values by the subject's body weight in kilograms.

For exploratory purposes, the maximum decreases in blood glucose concentration from baseline and the time to maximum decrease in blood glucose concentration after initiation of study drug infusion were also measured.

Pharmacokinetic assessments

The pharmacokinetic profiles of insulin glulisine and RHI were assessed by insulin exposure at steady state (INS-AUC_{SS}), which was determined as the area under the insulin concentration time curve from 90 – 120 minutes after start of the infusion of study medication, insulin concentration at steady-state (C_{SS}), total insulin exposure (INS-AUC_{0-clamp end}), total clearance (CL_{tot}), volume of distribution at steady-state (V_{SS}), terminal elimination half-life ($t_{1/2}$), and mean residence time (MRT).

Immunoreactive insulin concentrations after administration of RHI were corrected for endogenous insulin concentration, estimated from C-peptide concentration, to determine exogenous insulin levels. C-peptide samples were not required for assessment of insulin glulisine levels, due to the use of a specific antiserum to detect this analogue.

Safety assessments

Adverse events were defined as any unfavorable and unintended sign, symptom, syndrome, or illness developing, or worsening, during the observation period of the study. In addition physical examinations, including vital signs and assessments of hematology, clinical chemistry, and urine were carried out. Twelve-lead ECGs were recorded 30 min before and 1.5 hours and 6 hours after initiating the insulin infusions. Heart rate, PR interval, QRS complex, QT interval, QTc interval and RR interval were all assessed. These were analyzed by an independent cardiologist, blinded for study medication, for effects on repolarization.

Sample analysis

According to treatment, serum samples were analyzed for insulin glulisine with a radioimmunoassay specific for insulin glulisine (Linco Research Inc, St Charles; non commercial kit), with a lower limit of quantification (LLOQ) of $2.00\,\mu\text{IU}\cdot\text{mL}^{-1}$ and <0.001% cross-reactivity to human insulin, or as appropriate, for human insulin (RHI) and C-peptide. Human insulin was determined with a radioimmunoassay for immunoreactive serum insulin (Linco Research Inc, St Charles Missouri USA via Biotrend GmbH, Köln) with a LLOQ of $4.30\,\mu\text{IU}\cdot\text{mL}^{-1}$, and C-peptide with the BIOSOURCE C-PEP-RIA-CT (Biosource Europe, Nivelles, Belgium) with a LLOQ of $0.070\,\text{nmol}\cdot\text{L}^{-1}$. All analyses were performed by the Bioanalytical Services Division, FARMOVS PAREXEL (Pty) Ltd., Bloemfontein, South Africa. Blood glucose was determined with a Yellow Springs Instruments 2300 S glucose analyzer using the glucose oxidase method.

Statistics

The pharmacodynamic parameters $GIR-AUC_{SS}$, GIR_{SS} and $GIR-AUC_{0-clamp\ end}$ of the glucose infusion rate were compared using a analysis of variance (ANOVA) model with adjustment for treatment, period, sequence and subject-within-sequence contribution (Schuirmann, 1987). Fieller's theorem (Vourinnen and Tuominen, 1994) method was used on the raw data, to generate the standard 90% confidence interval (CI) of the ratio of the treatment means.

The pharmacokinetic parameters are presented with descriptive statistics.

Results

Study conduct

All 16 subjects enrolled and randomized completed the study and were included in the pharmacokinetic, pharmacodynamic and safety analyses. Subjects were healthy male Caucasians whose demographics are presented in Table 1. There were no protocol violations.

Clamp performance

The mean individual baseline blood glucose levels were similar at $82 \text{ mg} \cdot dL^{-1}$ (95% CI 79; $85 \text{ mg} \cdot dL^{-1}$) prior to insulin glulisine administration, and $82 \text{ mg} \cdot dL^{-1}$ (95% CI 79; $84 \text{ mg} \cdot dL^{-1}$) prior to RHI, without significant individual differences between clamp days [0.0 mg·dL⁻¹ (95% C.I. – 2.7; 2.7 mg·dL⁻¹)]. The actual mean blood glucose level at steady state was $86 \text{ mg} \cdot dL^{-1}$ (95% CI 85; $88 \text{ mg} \cdot dL^{-1}$) for insulin glulisine, and $85 \text{ mg} \cdot dL^{-1}$ (95% CI 84;

Table 1 Demographics

Age (years)	22 (18, 32)
Weight (kg)	80 (71, 100)
Height (cm)	183 (172, 197)
BMI (kg/m²)	24 (20, 26)

Data are given as arithmetic mean (range)

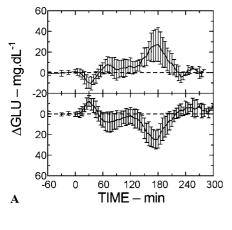
 $87 \, \mathrm{mg \cdot dL^{-1}}$) for RHI, without significant individual differences between clamp days [0.8 $\,\mathrm{mg \cdot dL^{-1}}$ (95% C.I. – 0.9; 2.6 $\,\mathrm{mg \cdot dL^{-1}}$)]. Average coefficients of variation for blood glucose at steady state (90 – 120 min) during clamp procedures were equal at 5% (95% CI 4; 6%) for both insulin glulisine and RHI, indicating reliably established euglycemia.

Glucodynamics

Glucose infusion had to commence on average 25 min (range 20; 50 min) after start of insulin glulisine infusion and was stopped at 200 min (range 175; 265 min). Similarly, 25 min (range 10; 35 min) passed after start of regular human insulin infusion before glucose infusion had to commence, which was stopped after 205 min (range 180; 295 min).

Maximum reduction in glucose concentration of on average $-11.3 \, mg \cdot dL^{-1}$ (median, range -21.9; $-6.0 \, mg \cdot dL^{-1}$) was to some extent delayed behind the start of glucose infusion, to 30 min (median, range 20; 50 min) after initiation of insulin glulisine infusion, and similar on average $-12.5 \, mg \cdot dL^{-1}$ (median, range -17.0: $-3.3 \, mg \cdot dL^{-1}$) after regular human insulin, also at 30 min (range 15; 85 min) (Fig. 1 A).

The GIR profiles of both treatments were superimposable, indicating equal effectiveness for glucose disposal (Fig. 1B).


Thus, insulin glulisine and RHI were equally rapid in onset of activity and equally potent as shown both by equivalent glucose utilization (GIR-AUC $_{SS}$), and glucose infusion rates (GIR $_{SS}$) at steady state, as well as by equivalent total glucose disposal (GIR-AUC $_{0-\text{clamp end}}$) (Table **2**).

Pharmacokinetics

The concentration profiles of insulin glulisine and regular human insulin followed the same time course.

A distinct quantitative comparison of serum insulin levels in the two groups is inherently restricted due to the different antibodies used for detection of insulin glulisine and RHI (Fig. **1 C**). The insulin exposure under steady-state INS-AUC_{SS} was measured as around 30% greater for insulin glulisine than for RHI. Also, insulin glulisine concentration at steady state, C_{SS} , and total insulin glulisine systemic exposure (INS-AUC_{0-clamp end}) were both measured as 21% higher than those for RHI (Table **3**).

Insulin concentration was $10\,\mu\text{U/mL}$ (range 5; $20\,\mu\text{U/mL}$) at baseline prior to infusion of regular human insulin. Release of endog-



Fig. **1A** to **D A** Change in blood glucose concentration (Δ GLU – mg·dL⁻¹) from baseline for insulin glulisine (upper panel) and regular human insulin (lower panel). **B** Glucose infusion rate (GIR – mg·kg⁻¹·min⁻¹) profiles. **C** Insulin concentration (INSULIN – μ U·mL⁻¹) time profile. **D** C-peptide concentration (C-PEPTIDE nmol·L⁻¹) time profile (for RHI only). Data are given as arithmetic mean with standard deviation.

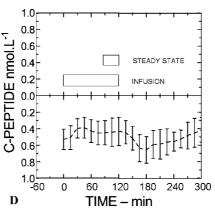


Table 2 Glucodynamics

	RHI	GLU	Point estimate (90% CI) GLU/RHI
GIR-AUC _{ss} (mg⋅kg ⁻¹)	214	209	97.6 (88.4; 107.6)
GIR_{SS} (mg·kg ⁻¹ ·min ⁻¹)	7.2	7.0	98.4 (89.3; 108.5)
$GIR-AUC_{0-clamp\ end}$ $(mg \cdot kg^{-1})$	1050	995	94.8 (84.5; 106.2)

GIR data are arithmetic means; PE based on raw scaled data; GLU = insulin glulisine

enous insulin was modestly reduced by about 20% during infusion as estimated from C-peptide concentrations (Fig. 1D).

Distribution and elimination of insulin glulisine and RHI were similar, as shown by similar V_{SS} , MRT, CL_{tot} , and $T_{1/2}$, with values of the latter reflecting fast elimination from the systemic circulation (Table **3**).

ECG readings

There were no noteworthy individual or within-group changes in conduction parameters (PR, QRS, QT, QTcB) from immediately before initiating the continuous i.v. infusion of insulin glulisine (0 minutes) until 90 minutes after the start of administration (at the time when steady-state levels of insulin glulisine were accomplished) or upon completion of the clamp (360 minutes) (Table 4). Specifically, there were no statistically significant withingroup changes from baseline in QTcB. Blinded over-reading of

Table 3 Pharmacokinetics

	GLU	RHI
INS-AUC _{ss} (µIU·min·ml ⁻¹)	2393 (2059; 2808)	1856 (1262; 2261)
C _{ss} (μIU·ml ⁻¹)	70 (54; 95)	58 (35; 84)
INS-AUC _{0 – clamp end} (μΙ U · min · ml ⁻¹)	9262 (8083; 10751)	7652 (5274; 9790)
V _{SS} (L)	13 (9; 17)	22 (13; 31)
T½ (min)	13 (9; 26)	17 (9; 26)
CL _{tot} (mL⋅min ⁻¹)	927 (785; 1046)	1084 (864; 1606)
MRT (min)	14 (9; 17)	19 (12; 28)

INS data are geometric means (range); PE based on ln-scaled data; \mbox{GLU} = insulin glulisine

ECGs by a cardiologist did not detect any repolarization abnormalities associated with insulin glulisine administration. Serum potassium levels decreased on average by 0.2 mmol/L during insulin infusion.

Safety

There were no serious adverse events, no clinically relevant abnormalities with regard to clinical chemistry, and no change in insulin antibody binding, from baseline to the end of the study. Other safety assessments did not indicate any safety issue with insulin glulisine or RHI.

Table 4 ECG readings

ECG inter- vals	GLU Base- line	Change at steady state	RHI Base- line	Change at steady state
RR (ms)	1106	- 68 (- 291, 94)	1064	– 20 (– 179, 125)
PR (ms)	162	- 2 (- 20, 12)	158	6 (- 18, 32)
QRS (ms)	97	2 (- 10, 10)	97	4 (-2, 22)
QT (ms)	423	-9 (-76, 34)	419	-4 (-40, 58)
QTcB* (ms)	403	3 (-42, 35)	407	0 (- 19, 41)

^{*} QT corrected according to Bazett; GLU = insulin glulisine; Data are given as arithmetic mean (range)

Discussion

The results of this euglycemic clamp study employing intravenous infusion of study medication show that insulin glulisine and RHI demonstrate equivalent efficacy on an administered molar dose basis, as evidenced by comparable glucose disposal at steady state, GIR-AUC $_{\rm SS}$ and GIR $_{\rm SS}$. This is in agreement with previous reports of generally equal efficacy of insulin analogs (aspart, lispro, glargine) and RHI in humans (DiMarchi et al., 1994; Gillies et al., 2000; Simpson and Spencer, 1999; Wilde and McTavish, 1997).

The results are also in line with the finding, that regardless of differences in in vitro receptor binding affinities, insulin analogs have similar in vivo potency to RHI, as demonstrated in animal and human studies (Brange et al., 1988; Brange et al., 1990; Heinemann and Woodworth, 1998; Plum et al., 2000; Scholtz et al., 2003; Volund et al., 1991); this is attributable to receptor-mediated clearance. Notwithstanding the above, insulin glulisine has a similar insulin receptor binding affinity to RHI as well as equivalent in vitro potency (Hennige et al., 1999).

Though equivalence on a molar base may alleviate switching patients from RHI to insulin glulisine, it needs to be considered that improved post-prandial control with analogues such as insulin glulisine require prudent dose adaption, even when used in pump therapy (Anderson et al., 1997; Renner et al., 1999).

Insulin exposure in the steady state (INS-AUC_{SS}, C_{SS}) and total area under the insulin concentration time curve (INS-AUC_{0-clamp end}) were observed greater after insulin glulisine administration than after RHI administration. The apparent difference in exposure is unexplained since equimolar doses and hence the same total masses were infused, but may rest with the different antibodies employed for detection of insulin glulisine and RHI, which impede distinct quantitative comparisons. For perspective, following subcutaneous administration the absolute bioavailability of insulin glulisine and RHI (Becker et al., 2003; Frick et al., 2003) of about 70% is the same and similar to that of insulin lispro (Heinemann and Woodworth, 1998; Wilde and McTavish, 1997). Equivalent glucodynamic efficacy to regular human insulin at apparently different total systemic exposure is also reported for insulin lispro (Bott et al., 2004).

Distribution of insulin glulisine and RHI were similar and elimination was equally fast following intravenous administration, reflecting similar pathways. The more rapid elimination of insulin glulisine following subcutaneous injection is attributable to absorption-rate-limited elimination (Becker et al., 2003; Rave et al., 2004).

Insulin induced hypoglycaemia causes QT prolongation related to a decrease in potassium (Eckert and Agardh, 1998; Marques et al., 1997). All through euglycemia, insulin glulisine exposure did not affect cardiac conduction parameters as assessed by measurement of 12-lead ECGs. The absence of any effects of insulin glulisine on cardiac conduction under euglycaemia is reassuring as it attests to the absence of genuine effects of insulin and analogs on cardiac repolarization (Harris et al., 1999).

In conclusion, insulin glulisine and RHI show similar distribution and elimination profiles and equivalent glucodynamic efficacy on a molar, unit-per-unit basis.

References

- ¹ Anderson JH, Brunelle RL, Koivisto VA, Trautmann ME, Vignati L, Di-Marchi R. Improved mealtime treatment of diabetes mellitus using an insulin analogue. Clin Therapeutics 1997; 19: 62 – 72
- ² Becker R, Frick A, Wessels D, Scholtz H. Evaluation of the pharmacodynamic and pharmacokinetic profiles of insulin glulisine a novel, rapid-acting, human insulin analogue. Diabetologia 2003; 46: Abs 775
- ³ Brange J, Owens DR, Kang S, Volund A. Monomeric insulins and their experimental and clinical implications. Diabetes Care 1990; 13: 923 – 954
- ⁴ Brange J, Ribel U, Hansen JF, Dodson G, Hansen MT, Havelund S, Melberg SG, Norris F, Norris K, Snel L. Monomeric insulins obtained by protein engineering and their medical implications. Nature 1988; 333: 679 682
- ⁵ Brems DN, Alter LA, Beckage MJ, Chance RE, DiMarchi RD, Green LK, Long HB, Pekar AH, Shields JE, Frank BH. Altering the association properties of insulin by amino acid replacement. Protein Eng 1992; 5: 527 533
- ⁶ DCCT. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993; 329: 977 986
- ⁷ DiMarchi RD, Chance RE, Long HB, Shields JE, Slieker LJ. Preparation of an insulin with improved pharmacokinetics relative to human insulin through consideration of structural homology with insulin-like growth factor I. Horm Res 1994; 41 (Suppl 2): 93 – 96
- 8 Eckert B, Agardh CD. Hypoglycaemia leads to an increased QT interval in normal men. Clinical Physiology 1998; 18: 750 – 75
- ⁹ Frick A, Becker R, Wessels D, Scholtz H. Pharmacokinetic and glucodynamic profiles of insulin glulisine: an evaluation following subcutaneous administration at various injection sites. Diabetologia 2003; 46: Abs 776
- Gillies P, Figgizz D, Lamb H. Insulin glargine. Drugs 2000; 59: 253 260
- Harris DA, Robinson RTCE, Ireland RH, Heller SR. Comparative effects of human soluble insulin and the new insulin analogue, insulin aspart, upon ventricular repolarization. Diabetes 1999; 48 (Suppl 1): A114 (Abstract 490)
- Heinemann L, Woodworth J. Pharmacokinetics and glucodynamics of insulin lispro. Drugs of Today 1998; 34 (Suppl C): 23 – 36
- Hennige AM, Kellerer M, Strack V, Metzinger E, Seipke G, Haring HU. New human insulin analogs: characteristics of insulin signalling in comparison to ASP(B10) and regular insulin. Diabetologia 1999; 42: A178
- ¹⁴ Kang S, Brange J, Burch A, Volund A, Owens DR. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evi-

- dence from absorption studies of soluble human insulin and insulin analogues in humans. Diabetes Care 1991; 14: 942 948
- ¹⁵ Marques JLB, George E, Peacey SR, Harris ND, Macdonald, Cochrane T, Heller SR. Altered ventricular repolarization during hypoglycaemia in patients with diabetes. Diabet Med 1997; 14: 648 654
- ¹⁶ Owens DR, Zinman B, Bolli GB. Insulins today and beyond. Lancet 2001; 358: 739 – 746
- ¹⁷ Plum A, Agerso H, Andersen L. Pharmacokinetics of the rapid-acting insulin analog, insulin aspart, in rats, dogs, and pigs, and pharmacodynamics of insulin aspart in pigs. Drug Metab Dispos 2000; 28: 155 – 160
- ¹⁸ Rave K, Bott S, Heinemann L, Sha S, Becker RHA, Willavize SA, Lee J, Heise T. Time-action profile of inhaled insulin (exubera) in comparison with subcutaneously-injected insulin lispro and regular human insulin. Diabetes Care 2005; 28: 1077 1082
- ¹⁹ Renner R, Pfützner A, Trautmann M, Harzer O, Sauter K, Landgraf R. Use of insulin lispro in continuous subcutaneous insulin infusion treatment. Diabetes Care 1999; 22: 784–788

- ²⁰ Scholtz HE, Pretorius SG, Wessels D, Venter C, Potgieter M, Becker R. Equipotency of insulin glargine and regular human insulin on glucose disposal in healthy subjects following intravenous infusion. Acta Diabetol 2003; 40: 156 16 A
- ²¹ Schuirmann DJ. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J Pharmacokinet Biopharm 1987; 15: 657 – 680
- ²² Simpson K, Spencer C. Insulin aspart. Drugs 1999; 57: 759 765
- ²³ UKPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 837 853
- ²⁴ Volund A, Brange J, Drejer K, Jensen I, Markussen J, Ribel U, Sorensen AR, Schlichtkrull J. In vitro and in vivo potency of insulin analogues designed for clinical use. Diabet Med 1991; 8: 839 847
- ²⁵ Vourinnen J, Tuominen JA. Fieller's confidence intervals for the ratio of two means in the assessment of average bioequivalence from cross-over data. Stat Med 1994; 13: 2531 – 2545
- Wilde MI, McTavish D. Insulin lispro: a review of its pharmacological properties and therapeutic use in the management of diabetes mellitus. Drugs 1997; 54: 597 – 614