ARTÍCULO ORIGINAL

Saxagliptina y resultados cardiovasculares en pacientes con diabetes mellitus tipo 2

Benjamin M. Scirica, M.D., M.P.H., Deepak L. Bhatt, M.D., M.P.H., Eugene Braunwald, M.D., P. Gabriel Steg, M.D., Jaime Davidson, M.D., Boaz Hirshberg, M.D., Peter Ohman, M.D., Robert Frederich, M.D., Ph.D., Stephen D. Wiviott, M.D., Elaine B. Hoffman, Ph.D., Matthew A. Cavender, M.D., M.P.H., Jacob A. Udell, M.D., M.P.H., Nihar R. Desai, M.D., M.P.H., Ofri Mozenson, M.D., Darren K. McGuire, M.D., Kausik K. Ray, M.D., Lawrence A. Leiter, M.D. e Itamar Raz, M.D., por parte del Comité Directivo e Investigadores de SAVOR-TIMI 53*

RESUMEN

ANTECEDENTES

La seguridad y eficacia cardiovascular de muchos agentes antihiperglucemiantes actuales, incluyendo saxagliptina, un inhibidor de la dipeptidil peptidasa 4 (DPP-4), no están claras.

MÉTODOS

Asignamos al azar a 16,492 pacientes con diabetes tipo 2 que tenían antecedentes o estaban en riesgo de eventos cardiovasculares para recibir saxagliptina o placebo y les dimos seguimiento durante una mediana de 2.1 años. Los médicos tenían permitido ajustar otros medicamentos, incluyendo los agentes antihiperglucemiantes. El objetivo primario fue un compuesto de muerte por causas cardiovasculares, infarto del miocardio o evento vascular cerebral isquémico.

RESULTADOS

Se presentó un evento del objetivo primario en 613 pacientes en el grupo con saxagliptina v en 609 pacientes en el grupo con placebo (7.3% v 7.2%, respectivamente, según los estimados de Kaplan-Meier a dos años; relación de riesgo con saxagliptina, 1.00; intervalo de confianza del 95% [IC], 0.89 a 1.12; P = 0.99 para superioridad; P<0.001 para no inferioridad); los resultados fueron similares en el análisis "en tratamiento" (relación de riesgo, 1.03; IC de 95%, 0.91 a 1.17). El principal objetivo secundario compuesto por muerte cardiovascular, infarto del miocardio, evento vascular cerebral, hospitalización por angina inestable, revascularización coronaria o insuficiencia cardiaca se presentó en 1,059 pacientes en el grupo con saxagliptina y en 1,034 pacientes en el grupo con placebo (12.8% y 12.4%, respectivamente, según los estimados de Kaplan-Meier a dos años; relación de riesgo, 1.02; IC de 95%, 0.94 a 1.11; P = 0.66). Más pacientes en el grupo con saxagliptina que en el grupo con placebo fueron hospitalizados por insuficiencia cardiaca (3.5% vs. 2.8%; relación de riesgo, 1.27; IC de 95%, 1.07 a 1.51; P = 0.007). Las tasas de casos adjudicados de pancreatitis aguda y crónica fueron similares en los dos grupos (pancreatitis aguda, 0.3% en el grupo con saxagliptina y 0.2% en el grupo con placebo; pancreatitis crónica, <0.1% y 0.1% en los dos grupos, respectivamente).

CONCLUSIONES

La inhibición de DPP-4 con saxagliptina no incrementó ni disminuyó la tasa de eventos isquémicos, aunque aumentó la tasa de hospitalización por insuficiencia cardiaca. A pesar de que saxagliptina mejora el control glucémico, se necesitan otros métodos para reducir el riesgo cardiovascular en los pacientes con diabetes. (Patrocinado por AstraZeneca y Bristol-Myers Squibb; SAVOR-TIMI 53 Clinical-Trials.gov number, NCT01107886.)

Del TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, y Harvard Medical School (B.M.S., D.L.B., E.B., S.D.W., E.B.H., M.A.C., J.A.U., N.R.D.) y el VA Boston Healthcare System (D.L.B.) - todos en Boston; IN-SERM Unité 698, Université Paris-Diderot y Département Hospitalo-Universitaire FIRE, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, París (P.G.S.); las Divisiones de Endocrinología (J.D.) y Medicina Cardiovascular (D.K.M.), Departamento de Medicina Interna, University of Texas Southwestern Medical Center, Dallas; AstraZeneca Research and Development, Wilmington, DE (B.H., P.O.); Bristol-Myers Squibb, Princeton, NJ (R.F.); la Diabetes Unit, Department of Internal Medicine, Hadassah University Hospital, Jerusalén (O.M., I.R.); el Cardiovascular Sciences Research Centre, St. George's University of London, Londres (K.K.R.) y la Division of Endocrinology and Metabolism, Keenan Research Centre en el Li Ka Shing Knowledge Institute de St. Michael's Hospital, University of Toronto, Toronto (L.A.L.). Dirigir las solicitudes de reimpresión al Dr. Bhatt en el VA Boston Healthcare System, 1400 VFW Pkwy., Boston, MA 02132, o a dlbhattmd@post. harvard.edu.

Los doctores Scirica y Bhatt contribuyeron por igual a este artículo.

*Los investigadores en el estudio Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus (SAVOR)-Thrombolysis in Myocardial Infarction (TIMI) 53 se enumeran en el Apéndice Suplementario, disponible en NEJM.org.

Este artículo fue publicado el 2 de septiembre de 2013, y actualizada en 19 de septiembre 2013 en NEJM.org.

N Engl J Med 2013;369:1317-26. DOI: 10.1056/NEJMoa1307684 Copyright © 2013, 2014 Massachusetts Medical Society.

A DIABETES MELLITUS TIPO 2 DUPLICA EL riesgo de complicaciones cardiovasculares mayores en pacientes con y sin enfermedad cardiovascular establecida,1-3 de tal manera que la mayoría de los pacientes con diabetes mueren por enfermedades cardiovasculares.4 A pesar de que un mejor control glucémico ha demostrado en forma repetida reducir las complicaciones diabéticas microvasculares,5 continúa la duda de si alguna estrategia hipoglucemiante en particular, o agente terapéutico específico, es seguro desde un punto de vista cardiovascular o si realmente puede disminuir el riesgo cardiovascular. Con la posible excepción de los estudios de metformina⁶ e insulina,7 los estudios más reportados hasta la fecha que evalúan los efectos de las estrategias o medicamentos hipoglucemiantes específicos en los resultados cardiovasculares, no se han impulsado lo suficiente o no han demostrado un beneficio cardiovascular significativo8-10 o un mayor riesgo de muerte¹¹ o insuficiencia cardiaca.¹²⁻¹⁵ Por consiguiente, sigue existiendo una fuerte necesidad clínica para identificar agentes antiperglucémicos que sean, como mínimo, seguros y que puedan reducir potencialmente las complicaciones cardiovasculares. Por otra parte, en 2008, la Dirección de Alimentos y Medicamentos y la Agencia Europea de Medicamentos revisaron simultáneamente sus procesos de aprobación para los nuevos tratamientos hipoglucemiantes para solicitar una demostración de la seguridad cardiovascular.16

Saxagliptina (Onglyza, AstraZeneca y Bristol-Myers Squibb) es un inhibidor selectivo de la dipeptidil peptidasa 4 (DPP-4).¹⁷ En estudios fase 2-3, el tratamiento con saxagliptina mejoró el control glucémico en comparación con placebo y en los análisis combinados redujo el riesgo de eventos cardiovasculares mayores.¹⁸ El estudio Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus (SAVOR)–Thrombolysis in Myocardial Infarction (TIMI) 53, se diseñó para evaluar la seguridad y eficacia de saxagliptina con respecto a los resultados cardiovasculares en pacientes con diabetes mellitus que están en riesgo de eventos cardiovasculares.

MÉTODOS

SUPERVISIÓN DEL ESTUDIO

SAVOR-TIMI 53 fue un estudio fase 4, multicéntrico, con distribución al azar, doble ciego, controlado con placebo. Realizamos el estudio en

788 centros en 26 países (ver el Apéndice Suplementario, disponible con el texto completo de este artículo en NEJM.org).19 El estudio fue patrocinado por AstraZeneca y Bristol-Myers Squibb y diseñado por el TIMI Study Group y la Hadassah Medical Organization en colaboración con los patrocinadores, quienes apoyaron el monitoreo y donaron el fármaco. El protocolo fue aprobado por los comités de ética correspondientes de todos los centros participantes. La base de datos brutos se facilitó al TIMI Study Group, que, independientemente del patrocinador, realizó los análisis de datos bajo la dirección de uno de los autores académicos de acuerdo con un plan de análisis estadístico predefinido (ver el protocolo del estudio disponible en NEJM.org). Los primeros dos autores redactaron el primer borrador del manuscrito, y el TIMI Study Group redactó las versiones posteriores y tomó la decisión de presentarlo para publicación. Los miembros del TIMI Study Group y la Hadassah Medical Organization asumen la responsabilidad de la exactitud e integridad de los datos y todos los análisis y de la fidelidad de este reporte al protocolo.

POBLACIÓN DEL ESTUDIO

Los pacientes elegibles tenían antecedentes de diabetes mellitus tipo 2 documentada, un nivel de hemoglobina glucosilada de 6.5% a 12.0% y antecedentes de enfermedad cardiovascular establecida o múltiples factores de riesgo de enfermedad cardiovascular. Para satisfacer los criterios de enfermedad cardiovascular establecida, los pacientes debían tener por lo menos 40 años y antecedentes de un evento clínico asociado con aterosclerosis que compromete el sistema vascular coronario, cerebrovascular o periférico. Para satisfacer los criterios de múltiples factores de riesgo, los pacientes debían tener 55 años (varones) o 60 años (mujeres) con por lo menos uno de los siguientes factores de riesgo adicionales: dislipidemia, hipertensión o ser fumadores activos. Los pacientes no eran elegibles si en ese momento estaban recibiendo tratamiento basado en una incretina o si lo habían recibido en los últimos seis meses o si tenían enfermedad renal terminal y habían estado en diálisis a largo plazo, se habían sometido a trasplante renal o tenían un nivel de creatinina sérica por arriba de 6.0 mg por decilitro (530 µmol por litro). Todos los criterios de elegibilidad se informaron previamente.¹⁹ Se obtuvo el consentimiento informado por escrito de todos los pacientes.

DISTRIBUCIÓN AL AZAR Y TRATAMIENTO DEL ESTUDIO

Los pacientes elegibles fueron distribuidos al azar en una proporción 1:1 para recibir saxagliptina a una dosis de 5 mg al día (o 2.5 mg al día en pacientes con una tasa de filtración glomerular [TFG] estimada de ≤50 ml por minuto) o placebo de aspecto idéntico. La distribución al azar se realizó por medio de un sistema central computarizado telefónico o basada en la web en bloques de 4, con estratificación de acuerdo a la clasificación del estado de enfermedad cardiovascular (enfermedad cardiovascular establecida vs. sólo múltiples factores de riesgo) y función renal (función normal o insuficiencia renal leve [TFG estimada >50 ml por minutol vs. insuficiencia renal moderada [TFG estimada, 30 a 50 ml por minuto] vs. insuficiencia renal severa [TFG estimada <30 ml por minuto]).

Se administró saxagliptina o placebo en forma enmascarada hasta el final del periodo de seguimiento. A los pacientes que desarrollaron insuficiencia renal (TFG estimada de ≤50 ml por minuto) durante el periodo del estudio se les hizo un solo ajuste de la dosis a 2.5 mg al día. Cualquier otro tratamiento para el manejo del paciente con diabetes y enfermedad cardiovascular — incluyendo agregar, suspender o cambiar la dosis de los medicamentos antihiperglucemiantes concomitantes — fue a criterio del médico responsable. No se permitió el uso concomitante de otros inhibidores de DPP-4 o agonistas del péptido 1 similar al glucagón.

OBJETIVOS DE VALORACIÓN

El objetivo primario de eficacia y seguridad fue un compuesto de muerte por causas cardiovasculares, infarto del miocardio no fatal o evento vascular cerebral isquémico no fatal. El objetivo secundario de eficacia incluyó el compuesto del objetivo primario más hospitalización por insuficiencia cardiaca, revascularización coronaria o angina inestable. Las definiciones de los objetivos finales, las cuales se proporcionan en el Apéndice Suplementario, se desarrollaron para que fueran consistentes con las definiciones en el borrador de Standardized Definitions for End Point Events in Cardiovascular Trials, que fueron creadas como una iniciativa de la Dirección de Alimentos y Medicamentos.20 La pancreatitis se clasificó como aguda (definitiva o posible) o crónica.

Un comité de eventos clínicos compuesto por especialistas en medicina cardiovascular y pan-

creática, quienes no conocían las asignaciones a los grupos del estudio, adjudicaron todos los componentes del objetivo primario compuesto y los objetivos secundarios de eficacia y todos los casos de pancreatitis.

Los investigadores reportaron los episodios de hipoglucemia y se clasificaron como mayores si éstos requerían que un tercero interviniera activamente y como menores si los pacientes tenían síntomas pero se recuperaban sin asistencia en los primeros 30 minutos después de ingerir carbohidratos. Los investigadores también reportaron cualquier nivel de glucosa en sangre documentado por debajo de 54 mg por decilitro (3.0 mmol por litro), independientemente de los síntomas. Los eventos hipoglucémicos que requirieron hospitalización también se clasificaron por separado.

ANÁLISIS ESTADÍSTICO

Los análisis primarios de seguridad y eficacia se realizaron de acuerdo con el principio por intención de tratar sobre los datos de todos los pacientes distribuidos al azar, con un modelo de riesgos proporcionales de Cox, con estratificación de acuerdo con la categoría de insuficiencia renal basal y grupo con riesgo cardiovascular basal y con el tratamiento como un término modelo. Se realizó un análisis provisional de eficacia antes de concluir el estudio; por lo tanto, se consideró un valor P de menos de 0.049 para indicar significancia estadística en el análisis primario. El estudio se diseñó como un estudio de superioridad, con una jerarquía de pruebas cerrada para conservar el nivel alfa que predefinió que primero se debe realizar una prueba de no inferioridad con respecto al objetivo primario compuesto y en lo sucesivo una prueba de superioridad. Se realizó un análisis en tratamiento (intención de tratar modificado) como análisis de sensibilidad, que incluyó los eventos que se presentaron en los 30 días a partir de la administración de la última dosis del medicamento del estudio. Anteriormente se informaron otros detalles del análisis estadístico19 y se presentan en el Apéndice Suplementario.

RESULTADOS

PACIENTES DEL ESTUDIO

De mayo de 2010 a diciembre de 2011, un total de 16,492 pacientes pasaron por la distribución al azar. La mediana del periodo de seguimiento fue

2.1 años (rango intercuartil, 1.8 a 2.3) y el tiempo máximo de seguimiento fue 2.9 años. El tiempo total de observación fue 16,884 años-persona en el grupo con saxagliptina y 16,761 años-persona en el grupo con placebo. Los detalles de la asignación del estudio y disposición de pacientes se presentan en la Figura S1 en el Apéndice Suplementario. Entre los pacientes asignados a saxagliptina el medicamento del estudio se suspendió prematuramente con menos frecuencia que entre los pacientes asignados a placebo (1,527 pacientes [18.4%] vs. 1,705 pacientes [20.8%], P<0.001). Se realizó una evaluación final de signos vitales en el 99.1% de los pacientes. En el seguimiento se perdió un total de 28 pacientes.

Las características basales de los pacientes que pasaron por la distribución al azar, que se reportaron anteriormente²¹ y se presentan en la Tabla 1 y Tabla S1 en el Apéndice Suplementario, estaban bien equilibradas entre los dos grupos.

Los niveles de glucosa plasmática en ayuno fueron significativamente más bajos en el grupo con saxagliptina que en el grupo con placebo a los dos años y al final del periodo de tratamiento (P<0.001 en ambas comparaciones) y los niveles de hemoglobina glucosilada fueron significativamente más bajos en el grupo con saxagliptina que en el grupo con placebo después a un año (7.6% vs. 7.9%), a los dos años (7.5% vs. 7.8%) y al final del periodo de trata-

Característica	Saxagliptina (N = 8280)	Placebo (N = 8212)
Edad	(1.2.2.)	
Promedio — años	65.1±8.5	65.0±8.6
≥75 años — núm. (%)	1169 (14.1)	1161 (14.1)
Sexo femenino — núm. (%)	2768 (33.4)	2687 (32.7)
Raza blanca — núm. (%)†	6241 (75.4)	6166 (75.1)
Grupo étnico hispano — núm. (%)†	1778 (21.5)	1763 (21.5)
Peso;		
Promedio — kg	87.7±18.7	88.1±19.4
≥80 kg — núm. (%)	5291 (63.9)	5265 (64.2)
Índice de masa corporal§		
Promedio	31.1±5.5	31.2 ±5.7
≥30 — núm. (%)	4446 (53.7)	4370 (53.4)
Duración de la diabetes — años¶		
Mediana	10.3	10.3
Rango intercuartil	5.2–16.7	5.3–16.6
Enfermedad aterosclerótica establecida — núm. (%)	6494 (78.4)	6465 (78.7)
Hipertensión — núm. (%)	6725 (81.2)	6767 (82.4)
Dislipidemia — núm. (%)	5895 (71.2)	5844 (71.2)
Infarto del miocardio previo — núm. (%)	3147 (38.0)	3090 (37.6)
Insuficiencia cardiaca previa — núm. (%)	1056 (12.8)	1049 (12.8)
Revascularización coronaria previa — núm. (%)	3566 (43.1)	3557 (43.3)
Hemoglobina glucosilada		
Promedio — %	8.0±1.4	8.0±1.4
Distribución — núm. (%)		
<6.5%	590 (7.3)	673 (8.3)
6.5 a <7.0%	1442 (17.7)	1414 (17.5)
7.0 a <8.0%	2759 (33.9)	2657 (32.9)
8.0 a <9.0%	1577 (19.4)	1562 (19.4)
≥9%	1761 (21.7)	1764 (21.9)

Tabla 1. (seguido.)					
Característica	Saxagliptina (N=8280)	Placebo (N = 8212)			
Glucosa sérica en ayuno — mg/dl**	156±56	157±57			
Tasa de filtración glomerular estimada					
Promedio — ml/min	72.5±22.6	72.7±22.6			
Distribución — núm. (%)					
<30 ml/min	172 (2.1)	164 (2.0)			
30 a ≤50 ml/min	1122 (13.6)	1118 (13.6)			
>50 ml/min	6986 (84.4)	6930 (84.4)			
Proporción albúmina-creatinina††					
Mediana	1.8	1.9			
Rango intercuartil	0.7–7.5	0.7–7.9			
Distribución — núm. (%)					
<3.4	4867 (61.5)	4829 (61.6)			
3.4 a 33.9	2217 (28.0)	2209 (28.2)			
>33.9	832 (10.5)	806 (10.3)			

^{*} Los valores más-menos son promedios ±DE. No hubo diferencias significativas entre los dos grupos en ninguna de las características aquí enumeradas con excepción de hipertensión para la cual P=0.049. Para convertir los valores de glucosa a milimoles por litro, multiplique por 0.05551.

comparaciones). Específicamente, significativamente más pacientes en el grupo con saxagliptina que en el grupo con placebo tenían un nivel de hemoglobina glucosilada menor a 7% al final del periodo de tratamiento (36.2% vs. 27.9%, P<0.001) (Tabla S2 en el Apéndice Suplementario). Menos pacientes en el grupo con saxagliptina que en el grupo con placebo requirieron aumentar la dosis de medicamento antihiperglucemiante o agregar un nuevo medicamento antihiperglucemiante (1,938 pacientes [23.7% según los estimados de Kaplan-Meier a dos años] vs. 2,385 pacientes [29.3% según los estimados de Kaplan-Meier a dos años]; relación de riesgo con saxagliptina, 0.77; intervalo de confianza [IC] de 95%, 0.73 a 0.82; P<0.001) o inicio de tratamiento con insulina durante más de tres meses (454 pacientes [5.5% según los estimados de Kaplan-Meier a dos años] vs. 634 pacientes [7.8% según los estimados de Kaplan-Meier a dos años]; relación de riesgo, 0.70; IC de 95%, 0.62 a 0.79;

miento (7.7% vs. 7.9%) (P<0.001 para todas las comparaciones). Específicamente, significativamente más pacientes en el grupo con saxagliptina de medicamentos con el tiempo.) Los pacientes que en el grupo con placebo tenían un nivel de hemoglobina glucosilada menor a 7% al final del periodo de tratamiento (36.2% vs. 27.9%, P<0.001) (Tabla S2 en el Apéndice Suplementario). P<0.001) (Tabla S2 en el Apéndice Suplementario). P<0.001) (Tabla S3 en el Apéndice Suplementario).

OBJETIVOS CARDIOVASCULARES

Se presentó un evento de objetivo primario de muerte por causas cardiovasculares, infarto del miocardio no fatal o evento vascular cerebral isquémico no fatal en 613 pacientes en el grupo con saxagliptina (7.3%, según los estimados de Kaplan–Meier a dos años; 3.7 por cada 100 años-persona) y en 609 pacientes en el grupo con placebo (7.2%, según los estimados de Kaplan–Meier a dos años; 3.7 por cada 100 años-persona) (relación de riesgo, 1.00; IC de 95%, 0.89 a 1.12; P = 0.99 para superioridad y P<0.001 para no

[†] La raza y el grupo étnico fueron reportados por el paciente.

[🛨] Había datos disponibles de 8,277 pacientes en el grupo con saxagliptina y 8,197 en el grupo con placebo.

El índice de masa corporal es el peso en kilogramos dividido entre el cuadrado de la talla en metros. Había datos disponibles de 8,273 pacientes en el grupo con saxagliptina y 8,190 en el grupo con placebo.

[¶] Había datos disponibles de 8,270 pacientes en el grupo con saxagliptina y 8,207 en el grupo con placebo.

Había datos disponibles de 8,129 pacientes en el grupo con saxagliptina y 8,070 en el grupo con placebo.

^{***} Había datos disponibles de 7,892 pacientes en el grupo con saxagliptina y 7,805 en el grupo con placebo.

^{††} La albúmina se determinó en miligramos, y la creatinina se determinó en milimoles. Había datos disponibles de 7,916 pacientes en el grupo con saxagliptina y 7,844 en el grupo con placebo.

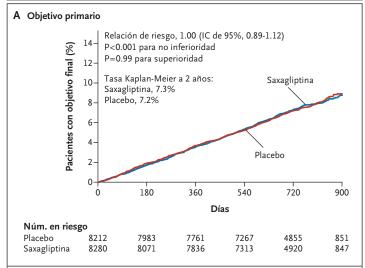
Tabla 2. Objetivos clínicos predefinidos.*					
Objetivo	Saxagliptina (N=8280)	Placebo (N=8212)	Relación de riesgo (IC del 95%)	Valor P	
	núm. (%)				
Muerte por causas cardiovasculares, infarto del miocardio o evento vascular cerebral: objetivo primario de eficacia	613 (7.3)	609 (7.2)	1.00 (0.89–1.12)	0.99	
Muerte por causas cardiovasculares, infarto del miocardio, evento vascular cerebral, hospitali- zación por angina inestable, insuficiencia car- diaca o revascularización coronaria: objetivo secundario de eficacia	1059 (12.8)	1034 (12.4)	1.02 (0.94–1.11)	0.66	
Muerte por cualquier causa	420 (4.9)	378 (4.2)	1.11 (0.96–1.27)	0.15	
Muertes por causas cardiovasculares	269 (3.2)	260 (2.9)	1.03 (0.87-1.22)	0.72	
Infarto del miocardio	265 (3.2)	278 (3.4)	0.95 (0.80-1.12)	0.52	
Evento vascular cerebral isquémico	157 (1.9)	141 (1.7)	1.11 (0.88-1.39)	0.38	
Hospitalización por angina inestable	97 (1.2)	81 (1.0)	1.19 (0.89-1.60)	0.24	
Hospitalización por insuficiencia cardiaca	289 (3.5)	228 (2.8)	1.27 (1.07–1.51)	0.007	
Hospitalización por revascularización coronaria	423 (5.2)	459 (5.6)	0.91 (0.80-1.04)	0.18	
Duplicación del nivel de creatinina, inicio de diálisis, trasplante renal o creatinina >6.0 mg/dl (530 μ mol/litro)	194 (2.2)	178 (2.0)	1.08 (0.88–1.32)	0.46	
Hospitalización por hipoglucemia	53 (0.6)	43 (0.5)	1.22 (0.82–1.83)	0.33	

^{*} Las tasas y porcentajes de eventos son estimados de Kaplan-Meier a dos años.

inferioridad) (Tabla 2 y Figura 1A). Se observaron resultados similares en la población por intención de tratar modificada (en tratamiento) (6.8% con saxagliptina vs. 6.4% con placebo, según los estimados de Kaplan–Meier a dos años; relación de riesgo con saxagliptina, 1.03; IC de 95%, 0.91 a 1.17; P = 0.60) (Tabla S5 en el Apéndice Suplementario).

Se presentó un evento mayor de objetivo secundario de muerte por causas cardiovasculares, infarto del miocardio no fatal o evento vascular cerebral isquémico no fatal, hospitalización por angina inestable, revascularización coronaria o insuficiencia cardiaca en 1.059 pacientes en el grupo con saxagliptina (12.8%, según los estimados de Kaplan-Meier a dos años; 6.6 por cada 100 años-persona) y en 1,034 pacientes en el grupo con placebo (12.4%, según los estimados de Kaplan-Meier a dos años; 6.5 por cada 100 años-persona) (relación de riesgo, 1.02; IC de 95%, 0.94 a 1.11; P = 0.66) (Tabla 2 y Figura 1B). Los componentes individuales de estos objetivos compuestos se muestran en la Tabla 2. Más pacientes en el grupo con saxagliptina que en el grupo con placebo fueron hospitalizados por insuficiencia cardiaca (3.5% vs. 2.8%, según los estimados de Kaplan-Meier a dos años; relación de riesgo, 1.27; IC de 95%, 1.07 a 1.51; P = 0.007).

Los resultados de los análisis adicionales de eficacia en los grupos predefinidos, incluyendo los subgrupos definidos de acuerdo con el estado con respecto al riesgo cardiovascular y función renal basal, se muestran en las Figuras S2 y S3 en el Apéndice Suplementario. Las causas adjudicadas de muerte se muestran en la Tabla S4 en el Apéndice Suplementario.


OBJETIVOS DE SEGURIDAD

Los objetivos de seguridad predefinidos se enumeran en la Tabla 3. El número de pacientes con trombocitopenia, linfocitopenia, infecciones, cáncer, hipersensibilidad o reacciones cutáneas, fracturas óseas o anomalías hepáticas fueron similares en los grupos con saxagliptina y con placebo. La hospitalización por hipoglucemia se presentó con poca frecuencia y la tasa fue similar en los dos grupos: 0.6% según los estimados de Kaplan–Meier a dos años (53 pacientes) en el grupo con saxagliptina y 0.5% según los estimados de Kaplan–Meier a dos años (43 pacientes) en el grupo con placebo (relación de riesgo con saxagliptina, 1.22; IC de 95%, 0.82 a 1.83; P = 0.33). Sin embargo, significativamente más pacientes

en el grupo con saxagliptina que en el grupo con placebo reportaron por lo menos un evento hipoglucémico (1,264 pacientes [15.3%] vs. 1,104 pacientes [13.4%], P<0.001); en el grupo con saxagliptina ocurrieron eventos hipoglucémicos mayores en 177 pacientes (2.1%) en comparación con 140 pacientes (1.7%) en el grupo con placebo (P = 0.047) y eventos hipoglucémicos en 1,172 pacientes (14.2%) en el grupo con saxagliptina en comparación con 1,028 pacientes (12.5%) en el grupo con placebo (P = 0.002). Se presentó pancreatitis con poca frecuencia, y la cantidad de pacientes con pancreatitis aguda o crónica fue similar en los dos grupos (24 pacientes [0.3%] en el grupo con saxagliptina y 21 pacientes [0.3%] en el grupo con placebo, P = 0.77). Se presentó pancreatitis aguda definitiva o posible en 22 pacientes (0.3%) en el grupo con saxagliptina y en 16 pacientes (0.2%) en el grupo con placebo (P = 0.42), pancreatitis aguda definitiva en 17 pacientes (0.2%) y 9 pacientes (0.1%) en los dos grupos, respectivamente (P = 0.17) y pancreatitis crónica en dos pacientes (<0.1%) y seis pacientes (0.1%), respectivamente (P = 0.18). Hubo cinco casos de cáncer pancreático en el grupo con saxagliptina y 12 en grupo con placebo (P = 0.095). No hubo casos de angioedema fatal; ocho pacientes en el grupo con saxagliptina y uno en el grupo con placebo presentaron angioedema no fatal (P = 0.04).

DISCUSIÓN

En este estudio con distribución al azar, controlado con placebo, el inhibidor de DPP-4 saxagliptina no redujo ni aumentó el riesgo del objetivo primario compuesto de muerte por causas cardiovasculares, infarto del miocardio o evento vascular cerebral isquémico, cuando se agregó al estándar de tratamiento en pacientes en alto riesgo de eventos cardiovasculares, cumpliendo así el criterio de no inferioridad16 frente a placebo, pero no proporcionó un beneficio cardioprotector. Saxagliptina se asoció con un control glucémico significativamente mejorado y redujo el desarrollo y progresión de microalbuminuria; sin embargo, aumentó el riesgo de hospitalización por insuficiencia cardiaca y el riesgo de eventos hipoglucémicos. En conjunto, nuestros hallazgos proporcionan datos para evaluar los beneficios y riesgos de saxagliptina en pacientes con alto riesgo de eventos cardiovasculares.

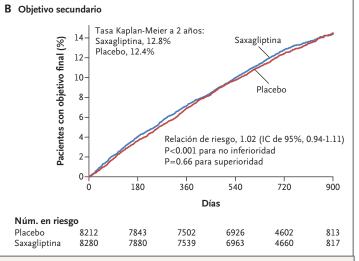


Figura 1. Tasas de Kaplan-Meier de los objetivos primario y secundario. El objetivo primario (Pánel A) fue un compuesto de muerte por causas cardiovasculares, infarto del miocardio o evento vascular cerebral isquémico. El objetivo secundario (Pánel B) fue un compuesto de muerte por causas cardiovasculares, infarto del miocardio, evento vascular cerebral isquémico, hospitalización por angina inestable, revascularización coronaria o insuficiencia cardiaca.

la DPP-4, representa una clase de agentes antihiperglucemiantes orales que están aprobados para el control glucémico. Los datos combinados de los estudios fase 2b-3 de saxagliptina mostraron que los pacientes tratados con saxagliptina tuvieron una tasa significativamente más baja de eventos adversos cardiovasculares mayores que los pacientes con control.18 Por otro lado, los análisis combinados de otros programas de desarrollo de inhibidores de la DPP-4 mostraron tendencias similares hacia meiores Saxagliptina, junto con otros inhibidores de resultados cardiovasculares con el tratamiento

Objetivo	Saxagliptina (N = 8280)	Placebo (N = 8212)	Valor P*
	no.		
Trombocitopenia	55 (0.7)	65 (0.8)	0.36
Linfocitopenia	49 (0.6)	40 (0.5)	0.40
Infección severa	590 (7.1)	576 (7.0)	0.78
Infección oportunista	21 (0.3)	35 (0.4)	0.06
Reacción de hipersensibilidad	93 (1.1)	89 (1.1)	0.82
Fractura ósea	241 (2.9)	240 (2.9)	1.00
Reacción cutánea	228 (2.8)	232 (2.8)	0.81
Anomalía renal	483 (5.8)	418 (5.1)	0.04
Cualquier hipoglucemia†	1264 (15.3)	1104 (13.4)	< 0.001
Mayor	177 (2.1)	140 (1.7)	0.047
Menor	1172 (14.2)	1028 (12.5)	0.002
Cáncer	327 (3.9)	362 (4.4)	0.15
Cualquier anomalía hepática†	55 (0.7)	67 (0.8)	0.28
AST >3× LSN	60 (0.7)	61 (0.7)	0.93
AST >10× LSN	12 (0.1)	15 (0.2)	0.57
ALT o AST >3× LSN y bilirrubina total >2× LSN	13 (0.2)	23 (0.3)	0.097
Cualquier pancreatitis†	24 (0.3)	21 (0.3)	0.77
Aguda: definitiva o posible	22 (0.3)	16 (0.2)	0.42
Aguda: definitiva	17 (0.2)	9 (0.1)	0.17
Aguda: posible	6 (0.1)	7 (0.1)	0.79
Crónico	2 (<0.1)	6 (0.1)	0.18

^{*} Los valores P se calcularon con la prueba de chi cuadrada o la prueba exacta de Fisher. ALT denota alanina aminotransferasa, AST aspartato aminotransferasa y LSN límite superior del rango normal.

activo.^{22,23} La aparente discordancia entre los hallazgos de los estudios fase 2b-3 y este estudio más grande posterior a la comercialización, destaca la importancia de realizar estudios apropiadamente impulsados con un seguimiento adecuado y procedimientos de adjudicación formalizados para proporcionar una evaluación completa de los riesgos y beneficios a largo plazo del tratamiento.

Existen diversas explicaciones potenciales del hallazgo de que una mediana de dos años de tratamiento con saxagliptina no redujo la tasa de eventos isquémicos, a pesar de la mejoría en los índices glucémicos. En primer lugar, la exposición al medicamento del estudio pudo no haber sido suficiente para revertir los efectos de años de procesos proateroscleróticos en pacientes con una mediana de duración de diabetes mellitus de más de 10 años; por lo tanto, el estudio

no excluye la posibilidad de un beneficio o riesgo con una duración más prolongada del tratamiento con saxagliptina. Por ejemplo, el estudio United Kingdom Prospective Diabetes Study (UKPDS), requirió 10 años de seguimiento después de concluir el periodo real de intervención para demostrar un efecto benéfico del control intensivo de la glucosa en la reducción del riesgo de infarto del miocardio, aunque ese estudio incluyó pacientes en bajo riesgo que fueron inscritos poco después del diagnóstico de diabetes.⁶

En segundo lugar, la diferencia real en los niveles de hemoglobina glucosilada entre los grupos del estudio fue relativamente pequeña ya que el tratamiento antihiperglucémico adicional se prescribió a criterio del médico tratante y se usó con mayor frecuencia en el grupo control que en el grupo con saxagliptina. Sin embargo,

[†] Los pacientes podían haber tenido más de un tipo de evento.

otros estudios en los que se observa una mayor diferenciación de la glucemia durante un período más largo tampoco demostraron individualmente beneficios macrovasculares definitivos con un control glucémico más intenso,9-11 y por consiguiente, la hipótesis general de que un mejor control glucémico reducirá los eventos macrovasculares sigue en duda. Sin embargo, una gran proporción de pacientes en nuestro estudio recibieron estatinas, tratamiento antiplaquetario y agentes para reducir la presión arterial — tratamientos que pueden haber mitigado el riesgo cardiovascular y atenuado las diferencias potenciales entre los grupos del estudio.21,24

No se esperaba observar una incidencia más alta de hospitalización por insuficiencia cardiaca entre los pacientes tratados con saxagliptina y debe considerarse en el contexto de múltiples pruebas que pueden haber arrojado un resultado falso positivo. Este hallazgo amerita continuar investigando y es necesario confirmarlo en otros estudios en curso, y no debe suponerse un efecto de la clase. El aumento en el riesgo de insuficiencia cardiaca se ha observado con otros agentes antihiperglucemiantes, incluyendo las tiazolidinedionas 13,27 y agonistas duales del receptor $\alpha-\gamma$ activado por el proliferador de peroxisoma, con resultados divergentes en estudios de tratamiento intensivo de la glucosa. 28,29

Saxagliptina redujo el desarrollo y progresión de microalbuminuria, aunque no está claro si el grado de cambio observado en nuestro estudio se asociaría con una disminución posterior en las complicaciones cardiovasculares o renales. 30,31 No encontramos diferencias entre saxagliptina y placebo con respecto a los eventos adversos predefinidos de interés especial, incluyendo pancreatitis aguda o crónica. Tampoco encontramos exceso de cáncer pancreático con saxagliptina, a pesar de los reportes observacionales de una asociación potencial entre los inhibidores de DPP-4 y estos eventos. 32-35

Muchos estudios, incluso aquellos que incluyen pacientes con enfermedad cardiovascular avanzada, han demostrado que un mejor control glucémico reduce las complicaciones microvasculares. Por consiguiente, sigue habiendo una fuerte necesidad clínica de medicamentos antihiperglucemiantes que puedan mejorar el control glucémico sin incrementar el riesgo de complicaciones cardiovasculares. Pocos agentes antihiperglucemiantes se han evaluado tan ampliamente como lo fue saxagliptina en este estudio; los hallazgos apuntan a un beneficio probable pero no comprobado en relación con la enfermedad microvascular sin resultados adversos macrovasculares. Junto con los estudios en curso de otros inhibidores de la DPP-4 y los nuevos agentes antihiperglucémicos, estos datos proporcionarán una base de pruebas más rigurosa y robusta que la actualmente disponible para guiar el futuro tratamiento de pacientes con diabetes.

Patrocinado por AstraZeneca y Bristol-Myers Squibb.

El Dr. Scirica manifiesta recibir honorarios por asesoría de Eisai, Gilead, Arena, St. Jude's Medical, Boston Clinical Research Institute y Decision Resources y estipendios de AstraZeneca, Bristol-Myers Squibb, Daiichi Sankyo, GlaxoSmithKline, Johnson & Johnson, Bayer HealthCare, Gilead, Merck y Eisai. El Dr. Bhatt manifiesta percibir honorarios por asesoría de Medscape Cardiology, honorarios personales de WebMD, una relación de consultoría pendiente con Regado Biosciences, y estipendios de Amarin, AstraZeneca, Bristol-Myers Squibb, Eisai, Ethicon, Medtronic, Sanofi-Aventis, la Medicines Company, FlowCo, PLx Pharma y Takeda. El Dr. Braunwald manifiesta percibir honorarios por asesoría de Sanofi-Aventis, Genzyme y la Medicines Company, honorarios por conferencias de Daiichi Sankyo, Eli Lilly, CV Therapeutics (ahora Gilead), Menarini, Medscape y Bayer, y estipendios de Johnson & Johnson, GlaxoSmithKline, Beckman Coulter, Roche Diagnostics, Pfizer, Merck, Sanofi-Aventis, Daiichi Sankyo y Eli Lilly. También manifiesta una asesoría no remunerada con Merck y conferencias no remuneradas de CVRx y Merck. El Dr. Steg manifiesta percibir honorarios por asesoría de Amarin, AstraZeneca, Bristol-Myers Squibb, Daiichi Sankyo, GlaxoSmithKline, Eli Lilly, Merck Sharp & Dohme, Novartis, Otsuka, Pfizer, Sanofi-Aventis, Servier y Vivus, honorarios por conferencias de AstraZeneca, Bayer, Bristol-Myers Squibb, Pfizer, Roche y la Medicines Company, emolumento por el desarrollo de material educativo de Boehringer Ingelheim, y estipendios de Sanofi-Aventis y Servier. El Dr. Hirshberg y el Dr. Ohman declaran ser empleados de AstraZeneca. El Dr. Frederich informa ser empleado de Bristol-Myers Squibb y un inventor de una patente pendiente respecto a métodos para la prevención o reducción del riesgo de mortalidad, que está autorizado a Bristol-Myers Squibb. El Dr. Wiviott manifiesta percibir honorarios por asesoría de AstraZeneca, Bristol-Myers Squibb, Eisai, Arena, Aegerion, AngelMed, Janssen, Xoma, ICON Clinical, Boston Clinical Research Institute y Eli Lilly-Daiichi Sankyo, y estipendios de Eisai, Merck, Sanofi-Aventis, AstraZeneca, Bristol-Myers Squibb, Arena y Eli Lilly-Daiichi Sankyo. El Dr. Mosenzon informa recibir honorarios por consultoría y por conferencias de Novo Nordisk, Eli Lilly, Sanofi y Novartis, y honorarios por conferencias de Merck Sharp & Dohme. El Dr. McGuire manifiesta recibir honorarios personales de Bristol-Myers Squibb, Boehringer Ingelheim, Janssen, Sanofi-Aventis, Genentech, Merck Sharp & Dohme, Medscape Cardiology, Pri-Med Institute, Daiichi Sankyo, Eli Lilly, Novo Nordisk, Roche, Axio Research, Premier Research, INC Research, GlaxoSmithKline y Takeda, y ha prestado sus servicios en un comité redactor ejecutivo de estudios clínicos sin remuneración para Gilead Sciences. El Dr. Ray manifiesta percibir honorarios por asesoría de Pfizer, Roche, Merck Sharp & Dohme, AstraZeneca, Sanofi-Aventis, Aegerion, Regeneron, Abbott, Novartis y Kowa, honorarios por conferencias de Pfizer, Merck Sharp & Dohme, AstraZeneca, Menarini, Novo Nordisk y Kowa, y honorarios personales de Roche, AstraZeneca, Sanofi-Aventis y GlaxoSmithKline. El Dr. Leiter manifiesta percibir honorarios personales de Servier y Takeda, y estipendios y honorarios personales de AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly, GlaxoSmithKline, Merck, Novartis, Novo Nordisk, Roche y Sanofi-Aventis. El Dr. Raz manifiesta percibir honorarios por asesoría de Novo Nordisk, AstraZeneca–Bristol-Myers Squibb, Sanofi-Aventis, Merck Sharp & Dohme, Eli Lilly, Insuline y Andromeda Biotech, y honorarios por conferencias de Novo Nordisk, AstraZeneca–Bristol-Myers Squibb, Sanofi-Aventis, Merck Sharp

& Dohme, Eli Lilly y Novartis. No se reportaron otros potenciales conflictos de interés importantes para este artículo.

Las formas de divulgación proporcionadas por los autores se pueden encontrar con el texto completo de este artículo en NEIM.org.

REFERENCIAS

- 1. Preis SR, Hwang SJ, Coady S, et al. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation 2009;119:1728-35.
- 2. Bhatt DL, Eagle KA, Ohman EM, et al. Comparative determinants of 4-year cardiovascular event rates in stable outpatients at risk of or with atherothrombosis. JAMA 2010;304:1350-7.
- 3. Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010;376:958.]

 22. [Erratum, Lancet 2010;376:958.]
- **4.** Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics 2013 update: a report from the American Heart Association. Circulation 2013;127(1): e6-e245. [Erratum, Circulation 2013;127(23): e841.]
- **5.** American Diabetes Association. Standards of medical care in diabetes 2013. Diabetes Care 2013;36:Suppl 1:S11-S66.
- **6.** Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-Year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008;359:1577-89.
- 7. The ORIGIN Trial Investigators. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 2012; 367:319-28.
- **8.** UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-53. [Erratum, Lancet 1999; 354:602.]
- **9.** Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009;360:129-39.
- 10. The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560-72.

 11. The Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545-59.
- 12. Bhatt DL, Chew DP, Grines C, et al. Peroxisome proliferator-activated receptor gamma agonists for the Prevention of Adverse events following percutaneous coronary Revascularization results of the PPAR study. Am Heart J 2007;154:137-43. [Erratum, Am Heart J 2007;154:402.]

- 13. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macro-Vascular Events): a randomised controlled trial. Lancet 2005;366:1279-89.
- **14.** Lago RM, Singh PP, Nesto RW. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 2007;370:1129-36.
- **15.** Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA 2005; 294:2581-6.
- 16. Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for industry: diabetes mellitus evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. 2008 (http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatory Information/Guidances/ucm071627.pdf).
- 17. Inzucchi SE, McGuire DK. New drugs for the treatment of diabetes. II. Incretinbased therapy and beyond. Circulation 2008:117:574-84
- **18.** Frederich R, Alexander JH, Fiedorek FT, et al. A systematic assessment of cardiovascular outcomes in the saxagliptin drug development program for type 2 diabetes. Postgrad Med 2010;122:16-27.
- 19. Scirica BM, Bhatt DL, Braunwald E, et al. The design and rationale of the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus-Thrombolysis in Myocardial Infarction (SAVOR-TIMI) 53 study. Am Heart J 2011; 162:818.e6-825.e6.
- **20.** Food and Drug Administration. Standardized definitions for end point events in cardiovascular trials. 2010 (http://www.cdisc.org/stuff/contentmgr/files/0/2356ae38ac190ab8ca4ae0b222392b37/misc/cdisc_november_16__2010.pdf).
- **21.** Mosenzon O, Raz I, Scirica BM, et al. Baseline characteristics of the patient population in the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus (SAVOR)-TIMI 53 trial. Diabetes Metab Res Rev 2013:29:417-26.
- 22. Monami M, Ahrén B, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 2013;15:112-20.

 23. Scheen AJ. Cardiovascular effects of
- gliptins. Nat Rev Cardiol 2013;10:73-84.

- **24.** Udell JA, Scirica BM, Braunwald E, et al. Statin and aspirin therapy for the prevention of cardiovascular events in patients with type 2 diabetes mellitus. Clin Cardiol 2012;35:722-9.
- **25.** Khan MA, Deaton C, Rutter MK, Neyses L, Mamas MA. Incretins as a novel therapeutic strategy in patients with diabetes and heart failure. Heart Fail Rev 2013;18:141-8.
- **26.** McMurray J. Vildagliptin shows no adverse effect on ejection fraction in diabetic patients with HF. Presented at the Heart Failure Congress 2013, Lisbon, Portugal, May 25–28, 2013. abstract.
- **27.** Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardio-vascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 2009;373:2125-35.
- 28. Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 2011;343:d4169.
- **29.** Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 2009;373:1765-72.
- **30.** Haller H, Ito S, Izzo JL Jr, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med 2011;364:907-17.
- **31.** Glassock RJ. Debate: CON position: should microalbuminuria ever be considered as a renal endpoint in any clinical trial? Am J Nephrol 2010;31:462-7.
- **32.** Butler PC, Elashoff M, Elashoff R, Gale EA. A critical analysis of the clinical use of incretin-based therapies: are the GLP-1 therapies safe? Diabetes Care 2013; 36:2118-25.
- **33.** Singh S, Chang HY, Richards TM, Weiner JP, Clark JM, Segal JB. Glucagon-like peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case-control study. JAMA Intern Med 2013;173:534-9.
- **34.** Kahn SE. Incretin therapy and islet pathology: a time for caution. Diabetes 2013;62:2178-80.
- **35.** Nauck MA. A critical analysis of the clinical use of incretin-based therapies: the benefits by far outweigh the potential risks. Diabetes Care 2013;36:2126-32.

Copyright © 2013, 2014 Massachusetts Medical Society.