Trichomoniasis in a Closed Community: Efficacy of Metronidazole

ELIZABETH E. KEIGHLEY

British Medical Journal, 1971, 1, 207-209

Summary

A retrospective survey of women treated in prison for trichomonal vaginitis with metronidazole showed that 488 of 496 (98.3%) were cured after one course of drugs. Five of the eight treatment failures were successfully treated by further courses of metronidazole.

A regimen of 400 mg metronidazole twice daily for seven days is simple and effective when taken in prescribed dosage. Metronidazole is still the drug of choice for trichomonal vaginitis. No toxic reactions were observed and there was no evidence that the drug has lost efficacy in the last ten years.

Introduction

The claims that hail the advent of new drugs have sometimes testified to the enthusiasm of the promoters rather than to the actual merits of their products and may have justified the cynical advice to use a new medicine before it has lost its efficacy. Even when the initial appraisal of an active chemical compound has proved to be correct it often has had to be modified later because of the development of drug resistance or the arrival of a newer and even more effective remedy. It was natural, therefore, that many expected that sooner or later metronidazole would be eclipsed or would cease to give such high rates of cure.

The publication abroad of papers representing that metronidazole (Flagyl) had begun to fail and rumours nearer home suggested the desirability of investigations designed to compare current cure rates in trichomoniasis with those obtained in the early 1960s. Accordingly a retrospective study was made of cases treated in the closed community of Holloway Prison, and this paper embodies the findings.

In order to compare the "response rate" of patients treated with metronidazole for trichomonal vaginitis in more recent years with that of previous years (Keighley, 1962), the case papers of all women treated by me in 1967 and 1968 at H.M. Prison, Holloway, were examined and the relevant data extracted.

As in prison it is customary to issue medicines only twice a day, this practice has been followed by my clinic in the giving of metronidazole ever since 1961. The patients on treatment were brought to the clinic twice daily for seven days; 400 mg of metronidazole was given with a glass of water to the patient by the clinic sister, who watched the patient swallow her tablets. In this way it has always been checked that the patient received the correct dosage of the drug. This method of ensuring that the patient had her complete dose of metronidazole was not stressed in my paper in 1962; however, in retrospect, it appears to be *the* important factor in evaluating the efficacy of metronidazole.

When comparing results of treatment of inpatients at

Holloway with those of outpatients at the Royal Northern Hospital, London, it became clear that the only difference was that the outpatients, particularly the young ones, were getting more careless every year about taking their tablets correctly. It was made as easy as possible—they were on the same twice-daily dosage as those in Holloway. But the outpatient who has forgotten to take her tablets or who has spread a week's tablets over two weeks is only too well known to us all.

The dosage in 1961-2 was 300 mg—that is $1\frac{1}{2}$ tablets—twice a day for seven days. Later many of the patients refused medication because of the bitter taste of the broken tablet. For this reason only, the dosage was standardized at 400 mg (two 200-mg tablets) twice daily for seven days. No local treatment for trichomoniasis was given.

Criteria.—All patients fulfilling the following criteria were included in the present survey. (1) Those suffering from trichomonal vaginitis confirmed by wet-film microscopy and/or cytology. (2) Those treated with metronidazole 400 mg twice daily for seven days. (3) Those followed up with tests of cure for a minimum period of two weeks. Patients with less than a two-week follow-up period have been reported, but are not included in the cure rate analysis.

Retrospective Survey

During 1967 and 1968 1,110 patients with trichomonal vaginitis were treated with metronidazole—549 in 1967 and 561 in 1968. Of these, 583 fulfilled the conditions for inclusion in the survey—293 from 1967 and 290 from 1968. Their ages ranged from 15 to 50 years (Table I). The age incidence of trichomoniasis in the women in prison usually

TABLE I-Age Incidence

				15–20	21-30	31-40	41-50	>50
1967 1968	• •	• • •	::	72 103	134 126	41 35	42 21	4 5
Total		.,		175	260	76	63	9

follows the pattern of the age incidence found in outpatient clinics, being highest in those aged 15-30 years, the years of highest sexual activity.

The 1967 figures shown in Table I give the usual picture; the sharp rise in those aged 15-20 in 1968 was due to the opening of a new remand centre for the under-twenties in September 1967. The teenagers from various parts of England were concentrated in this one remand centre, inflating our figures and distorting the normal picture.

Of the 583 cases documented, 241 (41.3%) were prostitutes, either married or single, and 99 (17%) were promiscuous. One girl aged 18 was virgo intacta. Marital status and details of sexual activity are shown in Table II. The higher the sexual activity the higher the incidence of *Trichomonas vaginalis* infestation, and therefore it is to be expected that those women engaged in prostitution will have a high rate of infestation. In fact it was found that the incidence of trichomoniasis in prostitutes was 54% in both 1967 and 1968

Royal Northern Hospital, London N.7

ELIZABETH E. KEIGHLEY, L.R.C.P., L.R.C.S.ED., Honorary Consultant Venereologist (Lately Consultant to H.M. Prison, Holloway)

TABLE II-Marital Status and Details of Sexual Activity

				· · · · · · · · · · · · · · · · · ·	· · · ·	Single		Ma	rried	D 1				-
	Ye	еаг		Virgo Intacta	Regular Partner	Various Partners	Promiscuous	Marital Partner Only	Extramarital Consorts	Divorced, Separated with Various Partners	Widows	Lesbians	Prostitutes	Totals
1967 1968	:	:	: :::	1 0	10	33 45	46 53	47 31	11 12	22 16	5	2 0	116 125	293 290
Total		:		1 0·2	18 3·1	78 13·4	99 17·0	78 13·4	23 3·9	38 6·5	5 0·9	2 0·3	241 41·3	583 100

TABLE III-Analysis of Results

;			Excluded fi	om Analysis		Re	sults	1		Addi	itional Diagno	scs	A - 1984 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Year		Total No. Recorded	Less than Two Weeks Follow-up	Positive on Cervical Cytology Only	No. Assessed	Possible Treatment Failure	Cu No.	res	Gonorrhoea	Candidial Vaginitis	*Syphilis P. A.S. I	Carcinoma of Cervix	Pregnant
1068	:	293 290	51 23	8 5	234 262	6 2	228 260	97·4 99·2	64 49	10 15	0 0 6	4 2	17 23
Total		583	74	13	496	8	488	98.3	113	25	1 2	6	40

^{*}Syphilis: P. = Primary. A.S. = Acute secondary. L. = Latent.

TABLE IV-Length of Observation in 488 Cases Treated Successfully

	Total No. Treated Success- fully	Post-treatment Follow-up								
			Weeks		Months					
		2	3	4	-2	-3	-6	-12		
1967 1968	228 260	48 56	40 50	32 58	59 60	15 7	20 21	14 8		
Total *Cumulative (%)	488	104 100-0	90 78·7	90 60·2	119 41·8	22 17·4	41 12·9	22 4·5		

^{*}These figures include patients followed-up at stated intervals and at all subsequent intervals.

(Keighley, 1969). Promiscuity, mainly in those aged 15-20, also results in a high incidence of trichomonal infestation. In 1968, of 791 girls aged 15-20 years, 23% were found to have T. vaginalis.

CLASSIFICATION OF CASES

Patients were classified as follows:

Excluded from Analysis.—(1) Those who had less than two weeks' post-treatment follow-up = incomplete test of cure. (2) Those who were negative for T. vaginalis on pretreatment direct smear but positive on cervical cytology; where no further cytology was undertaken the test of cure is taken as incomplete.

Included in Analysis.—(1) Possible treatment failures: those who failed to respond to the initial course or repeated courses of metronidazole. (2) Cures: those who responded to the initial course of metronidazole having had two weeks or more follow-up and no recurrence of the infestation.

Results

EXCLUDED FROM ANALYSIS

Of the 583 cases documented 87 were excluded from the "cure rate" analysis.

(1) Seventy-four patients (12.7%) had less than two weeks' follow-up (2-10 days) (Table III). All were negative for T. vaginalis on direct film at posttreatment examination. Of these, 62 showed immediate clinical response; inflammation and irritation had subsided and there was no discharge. In the other 12 patients some discharge persisted; most of these had concurrent infections or cervical erosion. These 74 patients were women on remand in custody, before reappearing at court, who did not return to the prison.

(2) Thirteen patients were negative for T. vaginalis on pre-

treatment direct film examination but were found to be positive on cervical cytology. After treatment with metronidazole smears were negative, but as no further cytology was undertaken the test of cure is taken as incomplete.

INCLUDED IN ANALYSIS

Response to Treatment.—Of the 496 cases taken into the cure rate assessment, 488 (98.3%) were classified as "cures"; these were negative for T. vaginalis on direct film examination after one course of metronidazole and remained negative throughout the observation period. The length of observation in this group is shown in Table IV.

Treatment Failures.—Eight patients were classed as "treatment failures" and re-treated with the same dosage of metronidazole. Of these, six received a second course (four responded to treatment, one left the prison, and one refused further treatment) and two required a third course (one was negative on direct film examination throughout but positive on cervical cytology on two occasions (first and fifth weeks) and became negative on cytology after a third course of metronidazole; the other was re-treated twice but left the prison before follow-up examination was carried out). Details and summary of the pathological results in these eight cases are given in Table V.

CLINICAL RESPONSE IN ALL CASES IN SURVEY

Before treatment 95% of patients complained of a discharge and irritation; 30 (5%) had no complaints and were symptom-free. After treatment with metronidazole, inflammation and irritation subsided and discharge cleared within four weeks in 418 patients (71.7%). In 61 a scanty discharge remained which cleared at varying periods up to 12 weeks. In 74 (12.7%) some discharge persisted, mostly due to other complicating conditions (Table VI). Time of examination after the start of treatment, when the patient was free of vaginal discharge, is shown in Table VI.

ADVERSE REACTIONS

There were no complaints of intolerance. I consider this to be due to the regular life of eating and sleeping and to the fact that the patient always received her tablets after a meal.

TABLE V-Pathological Results in Eight Patients Needing Re-treatment

				Weeks a	after Tr	eatmen	t								
No.	Age and Marital Status	Sexual Activity	Additional Diagnoses	1	2	3	4	5	6	8	12	Results of Re-treatment with Metronidazole			
1	25 S.	Pro.	Preg. Gon.		+							Left the prison: no further details			
2	22 S. 29 S.	Pro. Promiscuous	Gon.		<u> </u>		+	-	-			Responded to second course Responded to second course			
4	21 M.		Can. vag.		-	+	_					Refused further treatment			
5	30 M.	E.M.C.		(\$====		+	-					Responded to second course			
6	26 S.	E.M.C.		Smear Cytol. +	l			-	i —	_		Responded to third course			
7 8	21 M. 29 S.	Pro.	Chronic gon. Salpingitis at 4 weeks	` '	+	+	+-	<u> </u>		_		Left prison: no further details Responded to second course			

^{*}S. = Single. M. = Married. Pro. = Prostitute. E.M.C. = Extramarital consorts. Preg. = Pregnant. Gon. = Gonorrhoea. Can. vag. = Candidial vaginitis,

TABLE VI-Clinical Response to Treatment

			S			Examinat					Persis	ting Disch	arge (74 p	oatients)			
			Symptom-free Before		rree from	ı vagınaı	Discharge					Additional	Diagnose	,*			Total
			Treatment	7-10 days	2 weeks	-4 weeks	-8 weeks	-12 weeks	Gon.	Can. Vag.	Cer. eros.	C.P.S.	Ca cerv.	Salp.	Late preg.	T.V. Only	
No.			30 5·2	84 14·4	173 29·7	161 27·6	49 8·4	12 2·0	16	10	15	1	1	1	6	24	583
,0	••	••	3.2	14.4	71.7		0.4	2.0				12-	7				

^{*}Additional diagnoses: Gon. = Gonorrhoea. Can. vag. = Candidial vaginitis. Cer. eros. = Cervical erosion. C.P.S. = Chronic pelvic sepsis. Ca. cerv. = Carcinoma of cervix. Salp. = Salpingitis. Late preg. = Late pregnancy.

Antibiotics were never given concurrently with metronidazole; if a specific infection was present it was treated before the trichomonal vaginitis.

ADDITIONAL DIAGNOSES

In 113 patients gonorrhoea as well as trichomonal vaginitis was present. Twenty-five had a concurrent candidial vaginitis for which they were given nystatin pessaries. Six patients were suffering from all three infections—that is, trichomonal gonorrhoeal, and candidial. Eight patients were treated topically with podophyllin for vaginal warts.

Conclusions

Finally, it is a good thing to pause and contemplate the change that oral medication for trichomonal vaginitis has made in women's lives. 'Flagyl' is now taken as a matter of course, and a whole generation has no knowledge of the suf-

ferings of women with trichomoniasis before its introduction—the indignities and discomfort of the perpetual local treatment, douches, paintings, insufflations, and insertions of pessaries, etc. All these things women suffered for months and sometimes years on end, only to relapse when the treatment was discontinued.

The results of this survey leave no doubt in my mind that metronidazole has not lost its efficacy and is still the drug of choice.

I gratefully acknowledge the co-operation of Dr. P. G. W. Pickering, Director of Prison Medical Services, for his permission to consult the records in H.M. Prison, Holloway, and of Dr. R. J. K. Blyth, senior medical officer, H.M. Prison, Holloway, who made the arrangements for me to do so.

References

 Keighley, E. E. (1962). British Medical Journal, 2, 93.
 Keighley, E. E. (1969). Annual Report of the Venereal Diseases Department, H.M. Prison, Holloway.

In Vitro Activity of Clindamycin, Imipenem, Metronidazole, and Piperacillin-2 Tazobactam against Susceptible and Resistant Isolates of Bacteroides fragilis by 3 **Anaerobic Kill-Kinetics** 4 5 Running title: Activity of four antibiotics against B. fragilis 6 Reiner Schaumann **, Matthias Funke *, Eva Janssen and Arne C. Rodloff 7 8 9 Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of 10 Leipzig, Leipzig, Germany 11 [†]Both authors contributed equally to this work. 12 13 14 15 *Corresponding author. Mailing address: 16 Institute for Medical Microbiology and 17 18 Epidemiology of Infectious Diseases 19 University of Leipzig 20 Liebigstr. 21 21 D-04103 Leipzig 22 Germany 23 Phone: +49 341 97 15 200 24 Fax: +49 341 97 15 209 25 E-mail: reiner.schaumann@medizin.uni-leipzig.de 26

27	In Vitro Activity of Clindamycin, Imipenem, Metronidazole, and Piperacillin
28	Tazobactam against Susceptible and Resistant Isolates of Bacteroides fragilis by
29	Anaerobic Kill-Kinetics
30	
31	Abstract
32	The aim of the present study was to investigate the activity of clindamycin, imipenem
33	metronidazole, and piperacillin-tazobactam against 12 Bacteroides fragilis isolates (resistan
34	and susceptible strains) by kill-kinetics over 24 hours. In contrast to the other antimicrobia
35	agents, clindamycin did not affect strains with MIC $> 8.0~\mu\text{g/ml}$. For those strains with
36	$MIC \leq 8.0 \ \mu\text{g/ml}, \ all \ employed \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ bactericidal \ antibiotics \ except \ clindamycin \ showed \ nearly \ showed \ nea$
37	activity. Metronidazole proved to be the most active antimicrobial agent.
20	

2

Antimicrobial regimes for infections involving Bacteroides fragilis have generally been 39 40 limited as they are potentially resistant to a broad range of antibiotics (28). Drugs with known 41 activity against B. fragilis are some β-lactams, nitroimidazoles such as metronidazole, certain newer quinolones, chloramphenicol and clindamycin (17, 20, 23, 24, 28, 29). A diminution of 42 43 susceptibility to clindamycin has been reported in various countries (1, 7, 21, 26). Resistances against metronidazole still seem to be rare (1, 3). Golan et al. found an increasing 44 45 fluoroquinolone resistance among Bacteroides since 1994 (9). Conversely, Snydman et al. reported 2002 decreased geometric mean MICs among B. fragilis for piperacillin-tazobactam 46 47 (26). Resistance to carbapenems can be found occasionally (28). Thus, there is a great need 48 for knowledge of resistant patterns to accomplish an adequate prophylaxis and treatment of 49 anaerobic or mixed aerobic/anaerobic infections. This seems even more important as there are 50 great differences in the level of antimicrobial resistance between certain geographic areas and 51 even from one hospital to another (7, 10, 17). Kill-kinetic-curves over time provide more 52 information than the widely used MIC-determination and allow a comparison of different 53 antimicrobial classes (16, 27). Thus, the aim of the present study was to investigate the in 54 vitro activity of clindamycin, imipenem, metronidazole, and piperacillin-tazobactam against 55 B. fragilis isolates by kill-kinetics over time. The strains were kindly provided either by Elli Goldstein, R. M. Alden Research Laboratory, Santa Monica, California, USA or were isolates 56 57 of an international anaerobe-study. 58 Brucella broth (Becton Dickinson, Cockeysville, Maryland, USA) supplemented with vitamin 59 K₁ (Sigma Chemical Co.), and haemin (Serva Feinbiochemica, Heidelberg, Germany) was 60 used as growth medium, in the following mentioned as supplemented Brucella broth. Aliquots were plated on Columbia agar (Oxoid Ltd., Basingstoke, Hampshire, UK) supplemented with 61 62 sheep blood (Oxoid GmbH, Wesel, Germany), vitamin K1 and haemin, in the following 63 mentioned as supplemented Columbia agar.

88

MIC values were determined by E-test (AB Biodisk, Solna, Sweden) for all selected B. 64 fragilis strains and clindamycin, imipenem, metronidazole and piperacillin-tazobactam 65 according to the manufacterer's instructions as described previously (25). For the B. fragilis 66 strains with MIC ≤ 8.0 µg/ml, the killing activity for clindamycin (Sigma Chemical Co., St. 67 68 Louis, USA), imipenem (Merck & Co., Inc., West Point, USA), metronidazole (Sigma 69 Chemical Co.), and piperacillin (Sigma Chemical Co.)-tazobactam (Otsuka Chemical Co. 70 Ltd., Osaka, Japan) were assessed using 0.5, 1, 2 or 4 × MIC. In case of strains with MIC > 8.0 $\mu g/ml$, concentrations at 0.5, 1, 2 or 4 \times C_{max} values were employed. The following 71 72 concentrations were used as C_{max} values: clindamycin: 16 μg/ml (8); imipenem: 32 μg/ml 73 (22); metronidazole: 16 μg/ml (11, 13, 15); piperacillin: 60 μg/ml (2) and tazobactam: 74 25 µg/ml (12, 14, 19). 75 Antibiotic-free growth control was performed parallel to each experiment. The final inocula contained approximately 1.5×10^7 CFU/ml. At 0, 2, 4, 6, 12 and 24 hours after incubation at 76 77 37° C aliquots were plated on the supplemented Columbia agar. CFU were counted after 48 hours incubation. Detection limit was 10² CFU/ml. All experiments were carried out in an 78 79 anaerobic chamber (Heraeus, Hanau, Germany) containing 5% H₂, 15% CO₂ and 80% N₂. 80 For all strains and their respective antimicrobial agents the mean value and standard deviation 81 were calculated. Statistical analysis was done with SPSS-software. In those cases where the 82 number of strains exceeded 3, Paired-Sample Wilcoxon Signed Rank Test was employed to 83 identify significant differences. In each case at t = 6 hours and t = 24 hours differences were 84 calculated. A p-value < 0.05 was considered to be significant. Table 1 shows the MIC values for the tested B. fragilis strains for the respective 85 antimicrobial agent and the breakpoints according to EUCAST (6). The investigated strains 86 87 were divided by a cut off at 8.0 µg/ml into two groups: susceptible/wild type group and

resistant group, respectively. For clindamycin the same cut off is used independent of the

breakpoint (4 µg/ml) according to EUCAST (6). The chosen cut off at 8.0 µg/ml sperates also 89 90 two different groups, the wild type and the resistant group. 91 The pooled kill-kinetic-curves for B. fragilis strains with MIC $\leq 8.0 \mu g/ml$ are shown in 92 Fig. 1. At concentrations above MIC clindamycin showed bactericidal activity only against 5 93 out of 10 strains. Imipenem was bacterical against 8 out of 9 strains, metronidazole against 10 94 out of 10 strains. Piperacillin-tazobactam showed bactericidal activity against 6 out of 8 95 strains investigated. Piperacillin-tazobactam was the only antibiotic regime where statistical 96 significant differences were found after 6 hours of incubation. The use of $4 \times MIC$ resulted in a higher killing rate than the use of $1 \times MIC$ (p < 0.05). A significant higher killing rate using 97 $1 \times MIC$ or $4 \times MIC$ instead of $0.5 \times MIC$ and clindamycin or imipenem, respectively, 98 99 occurred at t = 24 hours (p < 0.05). Between $1 \times MIC$ and $4 \times MIC$ no statistical significances 100 were found for clindamycin or imipenem, respectively. In contrast, increasing concentrations 101 of metronidazole or piperacillin-tazobactam resulted in significant higher killing rates after 24 102 hours (p < 0.05). 103 The pooled kill-kinetic-curves for B. fragilis strains with MIC values > 8.0 µg/ml are shown 104 in Figure 2. The two metronidazole resistant strains were effectively killed by metronidazole 105 when concentrations of C_{max} (16 µg/ml) or more were used. Also, two of three imipenem 106 resistant strains were killed by imipenem with concentrations of C_{max} (32 µg/ml) or more. 107 Piperacillin-tazobactam showed activity against 3 of the 4 piperacillin-tazobactam resistant 108 strains when concentrations of C_{max} (piperacillin: 60 $\mu g/ml$ and tazobactam: 25 $\mu g/ml$) or 109 higher were used. In contrast, clindamycin did not inhibit the bacterial growth of the 110 clindamycin resistant strains even at concentrations of $4 \times C_{max}$ (64 $\mu g/ml$). Due to the limited 111 number of strains with MIC > 8 µg/ml, only for piperacillin-tazobactam statistical analysis 112 could be performed. However, no statistical differences in killing rates could be found even 113 between $0.5 \times C_{max}$ and $4 \times C_{max}$.

Comparing the prior established MICs by E-test with the assessed kill-kinetics, a good correlation could be found when the organisms were susceptible for the respective antibiotic agent. Furthermore, in the present study imipenem showed a slightly better effect than piperacillin-tazobactam. In contrast, clinical trials comparing piperacillin-tazobactam with imipenem/cilastatin in patients with intra-abdominal infections revealed equal efficacy (5, 18) or slight advantages for piperacillin-tazobactam (4). Employing resistant strains, clindamycin showed no effect on those strains while metronidazole could prove a rather good effect. Thus, metronidazole appeared to be the most effective investigated substance but still needs a combination with another antibiotic to cover infections with aerobic bacteria in mixed infections. In summary, the kill kinetics over time could provide additional information of local resistant patterns which is of utmost importance for an adequate prophylaxis and treatment in anaerobic or mixed infections. They should be performed in studies after prior establishing MIC values also choosing resistant strains.

139 References

- 140 1. Betriu C, Culebras E, Gómez M, López F, Rodríguez-Avial I, Picazo JJ. 2008.
- Resistance trends of the Bacteroides fragilis group over a 10-year period, 1997 to
- 2006, in Madrid, Spain. Antimicrob Agents Chemother. **52:**2686-2690.
- 2. Boselli E, Breilh D, Duflo F, Saux MC, Debon R, Chassard D, Allaouchiche B.
- 144 2003. Steady-state plasma and intrapulmonary concentrations of cefepime
- administered in continuous infusion in critically ill patients with severe nosocomial
- pneumonia. Crit. Care Med. **31:**2102-2106.
- 147 3. Brazier JS, Stubbs SL, Duerden BI. 1999. Metronidazole resistance among clinical
- isolates belonging to the Bacteroides fragilis group: time to be concerned? J.
- 149 Antimicrob. Chemother. **44:**580-581.
- 4. **Eklund AE, Nord CE and Swedish Study Group.**1993. A randomized multicenter
- trial of piperacillin/tazobactam versus imipenem/cilastatin in the treatment of severe
- intra-abdominal infections. J. Antimicrob. Chemother. **31**(Suppl A):79-85.
- 5. Erasmo AA, Crisostomo AC, Yan LN, Hong YS, Lee KU, Lo CM. 2004.
- 154 Randomized comparison of piperacillin/tazobactam versus imipenem/cilastatin in the
- treatment of patients with intra-abdominal infection. Asian J. Surg. 27:227-235.
- 156 6. European Committee on Antimicrobial Susceptibility Testing. 2012. EUCAST
- 157 Clinical Breakpoint Table v. 2.0, valid from 2012-01-01. http://www.eucast.org.
- 158 7. Fille M, Mango M, Lechner M, Schaumann R. 2006. Bacteroides fragilis group:
- trends in resistance. Curr. Microbiol. **52:**153-157.
- 8. Flaherty JF, Rodondi LC, Guglielmo BJ, Fleishaker JC, Townsend RJ,
- 161 **Gambertoglio JG.** 1988. Comparative pharmacokinetics and serum inhibitory activity
- 162 of clindamycin in different dosing regimens. Antimicrob. Agents Chemother.
- **32:**1825-1829.

- 9. Golan Y, McDermott LA, Jacobus NV, Goldstein EJ, Finegold S, Harrell LJ,
- 165 Hecht DW, Jenkins SG, Pierson C, Venezia R, Rihs J, Iannini P, Gorbach SL,
- 166 **Snydman DR.** 2003. Emergence of fluoroquinolone resistance among *Bacteroides*
- species. J. Antimicrob. Chemother. **52:**208-213.
- 10. **Hedberg M, Nord CE.** 2003. ESCMID Study Group on Antimicrobial Resistance in
- 169 Anaerobic Bacteria. Antimicrobial susceptibility of Bacteroides fragilis group isolates
- in Europe. Clin. Infect. Dis. **9:**475-488.
- 11. **Houghton GW, Thorne PS, Smith J, Templeton R, Collier J.** 1979. Comparison of
- the pharmacokinetics of metronidazole in healthy female volunteers following either a
- single oral or intravenous dose. Br. J. Clin. Pharmacol. **8:**337-41.
- 12. Jhee SS, Kern JW, Burm JP, Yellin AE, Gill MA. 1995. Piperacillin-tazobactam
- pharmacokinetics in patients with intraabdominal infections. Pharmacotherapy.
- 176 **15:**472-478.
- 177 13. Karjagin J, Pähkla R, Karki T, Starkopf J. 2005. Distribution of metronidazole in
- muscle tissue of patients with septic shock and its efficacy against *Bacteroides fragilis*
- *in vitro*. J. Antimicrob. Chemother. **55:**341-346.
- 180 14. Kinzig M, Sörgel F, Brismar B, Nord CE. 1992. Pharmacokinetics and tissue
- 181 penetration of tazobactam and piperacillin in patients undergoing colorectal surgery.
- Antimicrob. Agents Chemother. **36:**1997-2004.
- 15. Männistö P, Karhunen M, Mattila J, Koskela O, Suikkari AM, Heinonen P,
- 184 **Tuimala R, Haataja H.** 1984. Concentrations of metronidazole and tinidazole in
- female reproductive organs after a single intravenous infusion and after repeated oral
- administration. Infection. **12:**197-201.
- 187 16. Mueller M, de la Peña A, Derendorf H. 2004. Issues in pharmacokinetics and
- 188 pharmacodynamics of anti-infective agents: kill curves versus MIC. Antimicrob.
- 189 Agents Chemother. **48:**369-377.

190	17. Nagy E, Urbán E, Nord CE; ESCMID Study Group on Antimicrobial Resistance
191	in Anaerobic Bacteria. 2011. Antimicrobial susceptibility of Bacteroides fragilia
192	group isolates in Europe: 20 years of experience. Clin. Microbiol. Infect. 17:371-379.
193	18. Niinikoski J, Havia T, Alhava E, Pääkkönen M, Miettinen P, Kivilaakso E
194	Haapiainen R, Matikainen M, Laitinen S. 1993. Piperacillin/tazobactam versus
195	imipenem/cilastatin in the treatment of intra-abdominal infections. Surg. Gynecol
196	Obstet. 176: 255-261.

- 19. Occhipinti DJ, Pendland SL, Schoonover LL, Rypins EB, Danziger LH, Rodvold
 KA. 1997. Pharmacokinetics and pharmacodynamics of two multiple-dose
- 199 piperacillin-tazobactam regimens. Antimicrob. Agents Chemother. **41:**2511-2517.
- 20. Olsen I, Solberg CO, Finegold SM. 1999. A primer on anaerobic bacteria and anaerobic infections for the uninitiated. Infection. 27:159-165.
- 202 21. **Oteo J, Aracil B, Alós JI, Gómez-Garcés JL.** 2000. High prevalence of resistance to clindamycin in *Bacteroides fragilis* group isolates. J. Antimicrob. Chemother. **45:**691-204 693.
- 22. Paradis D, Vallée F, Allard S, Bisson C, Daviau N, Drapeau C, Auger F, LeBel
 M. 1992. Comparative study of pharmacokinetics and serum bactericidal activities of
 cefpirome, ceftazidime, ceftriaxone, imipenem, and ciprofloxacin. Antimicrob. Agents
 Chemother. 36:2085-92.
- 23. Schaumann R, Ackermann G, Pless B, Claros MC, Rodloff AC. 1999. In vitro activities of gatifloxacin, two other quinolones, and five nonquinolone antimicrobials against obligately anaerobic bacteria. Antimicrob. Agents Chemother. 43:2783-2786.
- 24. Schaumann R, Ackermann G, Pless B, Claros MC, Goldstein EJ, Rodloff AC.
 2000. In vitro activities of fourteen antimicrobial agents against obligately anaerobic
 bacteria. Int. J. Antimicrob. Agents 16:225-232.

25. Schaumann R, Petzold S, Fille M, Rodloff AC. 2005. Inducible metronidazole
resistance in nim-positive and nim-negative Bacteroides fragilis group strains after
several passages metronidazole containing columbia agar plates. Infection 33:368-
372.
26. Snydman DR, Jacobus NV, McDermott LA, Ruthazer R, Goldstein EJC,
Finegold SM, Harrell LJ, Hecht DW, Jenkins SG, Pierson C, Venezia R, Rihs J,
Gorbach SL. 2002. National survey on the susceptibility of Bacteroides fragilis
Group: report and analysis of trends for 1997-2000. Clin. Infect. Dis. 35(Suppl
1) : S126-S134.
27. Stratton CW, Weeks LW, Aldridge KE. 1987. Comparison of Kill-Kinetic Studies
with Agar and Broth Microdilution Methods for Determination of Antimicrobial
Activity of Selected Agents against Members of the Bacteroides fragilis Group. J.
Clin. Microbiol. 25: 645-649.
28. Wexler, HM. 2007. Bacteroides: the good, the bad, and the nitty-gritty. Clin.
Microbiol. Rev. 20: 593-621.
29. Zabinski RA, Vance-Bryan K, Krinke AJ, Walker KJ, Moody JA, Rotschafer
JC. 1993. Evaluation of activity of temafloxacin against Bacteroides fragilis by an in
vitro pharmacodynamic system. Antimicrob. Agents Chemother. 37:2454-2458.

TABLE 1 MIC values ($\mu g/ml$) of the B. fragilis strains tested and breakpoints according to EUCAST (7)

B. fragilis	Clindamycin $\leq 4(s) / > 4(r)$	Imipenem $\leq 2(s) / > 8 (r)$	Metronidazole $\leq 4(s) / > 4(r)$	Piperacillin/ Tazobactam $\leq 8(s) / > 16 (r)$		
WAL 13174	0.03	0.5	>256	2		
RMA 5935	0.03	>32	0.25	>256		
RMA 5120	1	0.25	0.5	0.125		
RMA 5081	2	0,25	1	4		
WAL 13054	2	0.25	>256	1		
RMA 6600	2	>32	0.5	32		
WAL 13267	4	0.125	0.5	0.5		
RMA 0309	4	>32	0.5	>256		
RMA 5798	8	0.125	0.5	4		
RMA 5691	8	0.25	1	16		
RMA 5138	>256	0.5	0.5	2		
RMA 6791	>256	0.5	1	1		

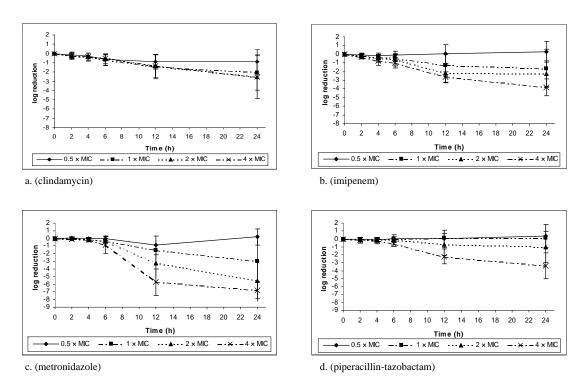


FIG. 1. Pooled kill-kinetic-curves of 10 *B. fragilis* strains and clindamycin (a), 9 *B. fragilis* strains and imipenem (b), 10 *B. fragilis* strains and metronidazole (c), and 8 *B. fragilis* strains and piperacillin-tazobactam (d) for strains with MIC \leq 8 μ g/ml.

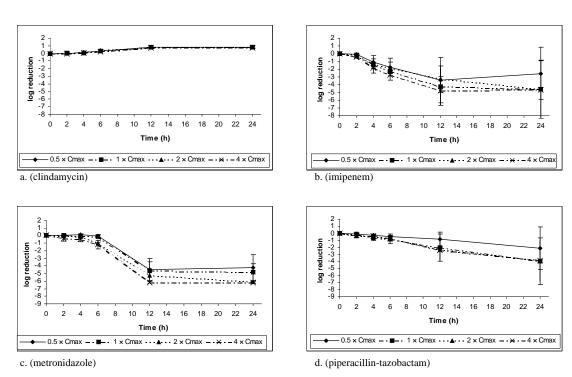


FIG. 2. Pooled kill-kinetic-curves of 2 *B. fragilis* strains and clindamycin (a), 3 *B. fragilis* strains and imipenem (b), 2 *B. fragilis* strains and metronidazole (c), and 4 *B. fragilis* strains and piperacillin-tazobactam (d) for strains with MIC > 8 µg/ml.