HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use AVYCAZ safely and effectively. See full prescribing information for AVYCAZ.

AVYCAZ (ceftazidime and avibactam) for injection, for intravenous use Initial U.S. Approval: 2015

-----INDICATIONS AND USAGE-----AVYCAZ is a combination of ceftazidime, a cephalosporin, and avibactam, a beta-lactamase inhibitor, indicated for the treatment of patients 18 years or older with the following infections caused by designated susceptible microorganisms:

- Complicated Intra-abdominal Infections (cIAI), used in combination with metronidazole (1.1)
- Complicated Urinary Tract Infections (cUTI), including Pyelonephritis (1.2)

As only limited clinical safety and efficacy data for AVYCAZ are currently available, reserve AVY CAZ for use in patients who have limited or no alternative treatment options (1.1, 1.2)

To reduce the development of drug-resistant bacteria and maintain the effectiveness of AVYCAZ and other antibacterial drugs, AVYCAZ should be used only to treat infections that are proven or strongly suspected to be caused by susceptible bacteria. (1.3)

- ----DOSAGE AND ADMINISTRATION-----ð AVYCAZ 2.5 grams (ceftazidime 2 grams and avibactam 0.5 grams) for
- injection administered every 8 hours by intravenous (IV) infusion over 2 hours in patients 18 years of age and older with creatinine clearance (CrCl) greater than 50 mL/min. For treatment of cIAI, metronidazole should be given concurrently (2.1).
- Recommended duration of treatment: (2.1)

 - ← cUTI including pyelonephritis: 7 to 14 days
- Dosage in patients with renal impairment (2.2)

= = ==================================			
E stimated C reatinine C learance (mL/min) ^a	R ecommended Dosage R egimen for AVYCAZ (ceftazidime and avibactam) ^b		
31 to 50	AVY CAZ 1.25 grams (ceftazidime 1 grams and avibactam 0.25 grams) every 8 hours		
16 to 30	AVY CAZ 0.94 grams (ceftazidime 0.75 grams and avibactam 0.19 grams) every 12 hours		
6 to 15 ^c	AVY CAZ 0.94 grams (ceftazidime 0.75 grams and avibactam 0.19 grams) every 24 hours		
Less than or equal to 5°	AVYCAZ 0.94 grams (ceftazidime 0.75 grams and avibactam 0.19 grams) every 48 hours		
a As calculated using the Cockcroft-Gault formula.			

- b All doses of AVYCAZ are administered over 2 hours
- c Both ceftazidime and avibactam are hemodialyzable; thus, administer AVY CAZ after hemodialysis on hemodialysis days.

- See Full Prescribing Information for instructions for constituting supplied dry powder and subsequent required dilution. (2.3)
- See Full Prescribing Information for drug compatibilities. (2.4)

-----DOSAGE FORMS AND STRENGTHS----AVY CAZ 2.5g (ceftazidime and avibactam) for injection is supplied as a sterile powder for constitution in single-dose vials containing ceftazidime 2 grams (equivalent to 2.635 grams of ceftazidime pentahydrate/sodium carbonate powder) and avibactam 0.5 grams (equivalent to 0.551 grams of avibactam sodium). (3)

-----CONTRAINDICATIONS-----

AVY CAZ is contraindicated in patients with known serious hypersensitivity to the components of AVYCAZ (ceftazidime and avibactam), avibactamcontaining products or other members of the cephalosporin class. (4)

- -----WARNINGS AND PRECAUTIONS-----• Decreased efficacy in patients with baseline CrCl of 30 to less than or equal to 50 mL/min. Monitor CrCl at least daily in patients with changing renal function and adjust the dose of AVYCAZ accordingly. (5.1)
- Hypersensitivity reactions: Includes anaphylaxis and serious skin reactions. Cross-hypersensitivity may occur in patients with a history of penicillin allergy. If an allergic reaction occurs, discontinue AVY CAZ. (5.2)
- Clostridium difficile-associated diarrhea: Clostridium difficile-associated diarrhea (CDAD) has been reported with nearly all systemic antibacterial agents, including AVY CAZ. Evaluate if diarrhea occurs. (5.3)
- Central Nervous System Reactions: Seizures and other neurologic events may occur, especially in patients with renal impairment. A djust dose in patients with renal impairment. (5.4)

-----ADVERSE REACTIONS-----Most common adverse reactions (incidence of > 10% in either indication) are vomiting, nausea, constipation, and anxiety. $(6.\overline{1})$

To report SUSPECTED ADVERSE REACTIONS, contact Forest Laboratories, LLC, at 1-800-678-1605 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

See 17 for PATIENT COUNSELING INFORMATION

Revised: 09/2015

FULL PRESCRIBING INFORMATION: CONTENTS*

- INDICATIONS AND USAGE
 - 1.1 Complicated Intra-Abdominal Infections (cIAI)
 - 1.2 Complicated Urinary Tract Infections (cUTI), including Pyelonephritis
 - 1.3 Usage
- DOSAGE AND ADMINISTRATION
 - 2.1 Recommended Dosage
 - Dosage Adjustments in Patients with Renal Impairment
 - Preparation of the AVY CAZ Solution for Administration
 - 2.4 Drug Compatibility
 - 2.5 Storage of Constituted Solutions
 DOSAGE FORMS AND STRENGTHS
- CONTRAINDICATIONS
- WARNINGS AND PRECAUTIONS
 - 5.1 Decreased Clinical Response in Patients with Baseline Creatinine Clearance of 30 to #50 mL/min

 - 5.2 Hypersensitivity Reactions5.3 Clostridium difficile-associated Diarrhea

 - 5.4 Central Nervous System Reactions5.5 Development of Drug-Resistant Bacteria
- ADVERSE REACTIONS
 - 6.1 Clinical Trial Experience

- 7 DRUG INTERACTIONS
 - 7.1 Probenecid
- 7.2 Drug/Laboratory Test Interactions
 8 USE IN SPECIFIC POPULATIONS
- - 8.1 Pregnancy
 8.3 Nursing Mothers
 - 8.4 Pediatric Use
 - 8.5 Geriatric Use
 - 8.6 Renal Impairment
- 10 OVERDOSAGE
- 11 DESCRIPTION
- 12 CLINICAL PHARMACOLOGY
 - 12.1 Mechanism of Action
 - 12.2 Pharmacodynamics
 - 12.3 Pharmacokinetics
- 12.4 Microbiology

 13 NONCLINICAL TOXICOLOGY
 - 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
- 14 CLINICAL STUDIES
- 15 REFERENCES

^{*}Sections or subsections omitted from the full prescribing information are not listed

FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE

1.1 Complicated Intra-Abdominal Infections (cIAI)

AVY CAZ (ceftazidime and avibactam), in combination with metronidazole, is indicated for the treatment of complicated intra-abdominal infections (cIAI) caused by the following susceptible microorganisms: Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Providencia stuartii, Enterobacter cloacae, Klebsiella oxytoca, and Pseudomonas aeruginosa in patients 18 years or older.

As only limited clinical safety and efficacy data for AVY CAZ are currently available, reserve AVY CAZ for use in patients who have limited or no alternative treatment options [see Clinical Studies (14)].

1.2 Complicated Urinary Tract Infections (cUTI), including Pyelonephritis
AVY CAZ (ceftazidime and avibactam) is indicated for the treatment of complicated urinary tract infections
(cUTI) including pyelonephritis caused by the following susceptible microorganisms: Escherichia coli,
Klebsiella pneumoniae, Citrobacter koseri, Enterobacter aerogenes, Enterobacter cloacae, Citrobacter
freundii, Proteus spp., and Pseudomonas aeruginosa in patients 18 years or older.

As only limited clinical safety and efficacy data for AVY CAZ are currently available, reserve AVY CAZ for use in patients who have limited or no alternative treatment options [see Clinical Studies (14)].

1.3 Usage

To reduce the development of drug-resistant bacteria and maintain the effectiveness of AVYCAZ and other antibacterial drugs, AVYCAZ should be used to treat only indicated infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

2 DOSAGE AND ADMINISTRATION

2.1 R ecommended Dosage

The recommended dosage of AVYCAZ is 2.5 grams (ceftazidime 2 grams and avibactam 0.5 grams) administered every 8 hours by intravenous (IV) infusion over 2 hours in patients 18 years of age and older in patients with normal renal function. For treatment of cIAI, metronidazole should be given concurrently. The guidelines for dosage of AVYCAZ in patients with creatinine clearance [CrCl] greater than 50 mL/min are listed in Table 1.

Table 1. Dosage of AVY CAZ 2.5 grams (ceftazidime 2 grams and avibactam 0.5 grams) by Indication						
Infection Dosage Frequency Infusion Time (hours) Duration of Treatment						
Complicated Intra-abdominal Infections [used in combination with metronidazole]	2.5 grams	Every 8 hours	2	5 to14 days		
Complicated Urinary Tract Infections including Pyelonephritis	2.5 grams	Every 8 hours	2	7 to 14 days		

2.2 Dosage Adjustments in Patients with Renal Impairment

The recommended AVYCAZ dosage in patients with varying degrees of renal function is presented in Table 2. For patients with changing renal function, monitor CrCl at least daily and adjust the dosage of AVYCAZ

accordingly [see Warnings and Precautions (5.1), Use in Specific Populations (8.6) and Clinical Pharmacology (12.3)].

Table 2. Dosage of AVYCAZ in Patients with Renal Impairment		
Estimated Creatinine Clearance (mL/minute) ^a	R ecommended Dosage R egimen for AVY CAZ (ceftazidime and avibactam) ^b	
31 to 50	AVY CAZ 1.25 grams (ceftazidime 1 gram and avibactam 0.25 grams) intravenously every 8 hours	
16 to 30	AVY CAZ 0.94 grams (ceftazidime 0.75 grams and avibactam 0.19 grams) intravenously every 12 hours	
6 to 15 ^c	AVY CAZ 0.94 grams (ceftazidime 0.75 grams and avibactam 0.19 grams) intravenously every 24 hours	
Less than or equal to 5 ^c	AVY CAZ 0.94 grams (ceftazidime 0.75 grams and avibactam 0.19 grams) intravenously every 48 hours	

- As calculated using the Cockcroft-Gault formula.
- b All doses of AVYCAZ are administered over 2 hours
- c Both ceftazidime and avibactam are hemodialyzable; thus, administer AVY CAZ after hemodialysis on hemodialysis days.

2.3 Preparation of the AVY CAZ Solution for Administration

AVY CAZ is supplied as a dry powder, which must be constituted and subsequently diluted, using aseptic technique prior to intravenous infusion.

- a) Constitute the powder in the AVY CAZ vial with 10 mL of one of the following solutions:
 - sterile water for injection, USP
 - 0.9% of sodium chloride injection, USP (normal saline)
 - 5% of dextrose injection, USP
 - all combinations of dextrose injection and sodium chloride injection, USP, containing up to 2.5% dextrose, USP, and 0.45% sodium chloride, USP, or
 - lactated Ringer's injection, USP
- b) Mix gently. The constituted AVY CAZ solution will have an approximate ceftazidime concentration of 0.167 grams/mL and an approximate avibactam concentration of 0.042 grams/mL. The final volume is approximately 12 mL. The constituted solution is not for direct injection. The constituted solution must be diluted before intravenous infusion.
- c) Prepare the required dose for intravenous infusion by withdrawing the appropriate volume determined from Table 3 from the constituted vial.

Table 3. Preparation of AVYCAZ Doses				
AVYCAZ (ceftazidime and avibactam) Dose	V olume to Withdraw from Constituted Vial for Further Dilution to 50 to 250 mL			
2.5 grams (2 grams and 0.5 grams)	12 mL (entire contents)			
1.25 grams (1 gram and 0.25 grams)	6 mL			
0.94 grams (0.75 grams and 0.19 grams)	4.5 mL			

- d) Before infusion, dilute the withdrawn volume of the constituted AVY CAZ solution further with the same diluent used for constitution of the powder (except sterile water for injection), to achieve a total volume between 50 mL (ceftazidime 0.04 grams/mL and avibactam 0.01 grams/mL) to 250 mL (ceftazidime 0.008 grams/mL and avibactam 0.002 grams/mL) in an infusion bag. If sterile water for injection was used for constitution, use any of the other appropriate constitution diluents for dilution.
- e) Mix gently and ensure that the contents are dissolved completely. Visually inspect the diluted AVYCAZ solution (for administration) for particulate matter and discoloration prior to

- administration (the color of the AVY CAZ infusion solution for administration ranges from clear to light yellow).
- f) Use the diluted AVY CAZ solution in the infusion bags within 12 hours when stored at room temperature.
- g) The diluted AVY CAZ solution in the infusion bags may be stored under refrigeration at 2 to 8éC (36 to 46éF) up to 24 hours following dilution and used within 12 hours of subsequent storage at room temperature.

2.4 Drug Compatibility

The AVY CAZ solution for administration at the range of diluted concentrations of ceftazidime 0.008 g/mL and avibactam 0.002 g/mL to ceftazidime 0.04 g/mL and avibactam 0.01 g/mL is compatible with the more commonly used intravenous infusion fluids in infusion bags (including Baxter[†] Mini-Bag Plus^ù) such as:

- 0.9% sodium chloride injection, USP
- 5% dextrose injection, USP
- all combinations of dextrose injection and sodium chloride injection, USP, containing up to 2.5% dextrose, USP, and 0.45% sodium chloride, USP
- lactated ringer's injection, USP, and
- Baxter[†] Mini-Bag Plus^u containing 0.9% sodium chloride injection or 5% dextrose injection.

Compatibility of AVY CAZ solution for administration with other drugs has not been established.

2.5 Storage of Constituted Solutions

Upon constitution with appropriate diluent, the constituted AVY CAZ solution may be held for no longer than 30 minutes prior to transfer and dilution in a suitable infusion bag.

Following dilution of the constituted solutions with the appropriate diluents, AVYCAZ solutions in the infusion bags are stable for 12 hours when stored at room temperature.

Following dilution of the constituted solutions with the appropriate diluents, AVYCAZ solutions in the infusion bags may also be refrigerated at 2 to 8éC (36 to 46éF) for up to 24 hours; and then should be used within 12 hours of subsequent storage at room temperature.

3 DOSAGE FORMS AND STRENGTHS

AVY CAZ 2.5 grams (ceftazidime and avibactam) for injection is supplied as a white to yellow sterile powder for constitution in a single-dose, sterile, clear glass vial containing ceftazidime 2 grams (equivalent to 2.635 grams of ceftazidime pentahydrate/sodium carbonate powder) and avibactam 0.5 grams (equivalent to 0.551 grams of avibactam sodium).

4 CONTRAINDICATIONS

AVY CAZ is contraindicated in patients with known serious hypersensitivity to the components of AVY CAZ (ceftazidime and avibactam), avibactam-containing products, or other members of the cephalosporin class [see Warnings and Precautions (5.2)].

5 WARNINGS AND PRECAUTIONS

5.1 Decreased Clinical Response in Patients with Baseline Creatinine Clearance of 30 to #50 mL/min

In a Phase 3 cIAI trial, clinical cure rates were lower in a subgroup of patients with baseline CrCl of 30 to less than or equal to 50 mL/min compared to those with CrCl greater than 50 mL/min (Table 4). The reduction in clinical cure rates was more marked in patients treated with AVYCAZ plus metronidazole compared to meropenem-treated patients. Within this subgroup, patients treated with AVYCAZ received a 33% lower daily dose than is currently recommended for patients with CrCl 30 to less than or equal to 50 mL/min. Monitor CrCl at least daily in patients with changing renal function and adjust the dosage of AVYCAZ accordingly [see Dosage and Administration (2.2), and Adverse Reactions (6.1)].

Clinical Cure Rate at Test of Cure, by Baseline Renal Function [–] mMITT Population ¹					
	AVYCAZ + Metronidazole Meropenem % (n/N) % (n/N)				
Normal function / mild impairment (CrCl greater than 50 mL/min)	85% (322/379)	86% (321/373)			
Moderate impairment (CrCl 30 to less than or equal to 50 mL/min)	45% (14/31)	74% (26/35)			

¹ Microbiological modified intent-to-treat (mMITT) population included patients who had at least one bacterial pathogen at baseline and received at least one dose of study drug.

5.2 Hypersensitivity Reactions

Serious and occasionally fatal hypersensitivity (anaphylactic) reactions and serious skin reactions have been reported in patients receiving beta-lactam antibacterial drugs. Before therapy with AVY CAZ is instituted, careful inquiry about previous hypersensitivity reactions to other cephalosporins, penicillins, or carbapenems should be made. Exercise caution if this product is to be given to a penicillin or other beta-lactam-allergic patient because cross sensitivity among beta-lactam antibacterial drugs has been established. Discontinue the drug if an allergic reaction to AVY CAZ occurs.

5.3 Clostridium difficile-associated Diarrhea

Clostridium difficile-associated diarrhea (CDAD) has been reported for nearly all systemic antibacterial drugs, including AVY CAZ, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial drugs alters the normal flora of the colon and may permit overgrowth of C. difficile.

C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibacterial use. Careful medical history is necessary because CDAD has been reported to occur more than 2 months after the administration of antibacterial drugs.

If CDAD is suspected or confirmed, antibacterial drugs not directed against C. difficile may need to be discontinued. Manage fluid and electrolyte levels as appropriate, supplement protein intake, monitor antibacterial treatment of C. difficile, and institute surgical evaluation as clinically indicated.

5.4 Central Nervous System Reactions

Seizures, nonconvulsive status epilepticus, encephalopathy, coma, asterixis, neuromuscular excitability, and myoclonia have been reported in patients treated with ceftazidime, particularly in the setting of renal impairment. A djust dosing based on creatinine clearance [see Dosage and Administration (2.2)].

5.5 Development of Drug-Resistant Bacteria

Prescribing AVYCAZ in the absence of a proven or strongly suspected bacterial infection is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria [see Indications and Usage (1.3)].

6 ADVERSE REACTIONS

The following adverse reactions are discussed in greater detail in the Warnings and Precautions section:

- Decreased Clinical Response in Patients with Baseline CrCl of 30 to 50 mL/min [see Warnings and Precautions (5.1)]
- Hypersensitivity Reactions [see Warnings and Precautions (5.2)]
- Clostridium difficile-A ssociated Diarrhea [see Warnings and Precautions (5.3)]
- Central Nervous System Reactions [see Warnings and Precautions (5.4)]
- Development of Drug-Resistant Bacteria [see Warnings and Precautions (5.5)]

6.1 Clinical Trial Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

AVY CAZ was evaluated in two active-controlled Phase 2 clinical trials, one each in cIAI and cUTI, including pyelonephritis. The Phase 2 trials included a total of 169 adult patients treated with AVY CAZ and 169 patients treated with comparators.

Complicated Intra-Abdominal Infections

The Phase 2 cIAI trial included 101 adult patients treated with AVY CAZ 2.5 grams (ceftazidime 2 grams and avibactam 0.5 grams) administered intravenously over 30 minutes every 8 hours plus 500 mg metronidazole administered intravenously over 60 minutes every 8 hours and 102 patients treated with meropenem. The median age of patients treated with AVY CAZ was 41 years (range 18 to 79 years). Patients were predominantly male (69.3%) and Caucasian (55.4%). Patients with an estimated baseline CrCl 50 mL/min or less were excluded.

Serious adverse reactions occurred in 9/101 (8.9%) of patients receiving AVY CAZ (with metronidazole) and 11/102 (10.8%) of patients receiving meropenem. The most common adverse reactions leading to discontinuation in patients receiving AVY CAZ were skin and subcutaneous tissue disorders (3%).

Adverse reactions occurring in 10% or more of patients receiving AVYCAZ were vomiting and nausea.

Increased Mortality

In a Phase 3 cIAI trial, death occurred in 2.5% (13/529) of patients who received AVY CAZ plus metronidazole and in 1.5% (8/529) of patients who received meropenem. A mong a subgroup of patients with baseline CrCl 30 to 50 mL/min, death occurred in 25.8% (8/31) of patients who received AVY CAZ plus metronidazole and in 8.6% (3/35) of patients who received meropenem. Within this subgroup, patients treated with AVY CAZ received a 33% lower daily dose than is currently recommended for patients with CrCl 30 to 50 mL/min [see

Dosage and Administration (2.2) and Warnings and Precautions (5.1)]. In patients with normal renal function or mild renal impairment (baseline CrCl greater than 50 mL/min), death occurred in 1.0% (5/498) of patients who received AVYCAZ plus metronidazole and in 1.0% (5/494) of patients who received meropenem. The causes of death varied and contributing factors included progression of underlying infection, baseline pathogens isolated that were unlikely to respond to the study drug, and delayed surgical intervention.

Complicated Urinary Tract Infections, Including Pyelonephritis

The Phase 2 cUTI trial included 68 adult patients treated with AVY CAZ administered intravenously over 30 minutes every 8 hours and 67 patients treated with imipenem-cilastatin (0.5 grams intravenously every 6 hours). The dose of AVY CAZ in this trial was 0.625 grams (ceftazidime 0.5 grams and avibactam 0.125 grams), which is lower than the recommended dose [see Dosage and Administration (2.2)]. Median age of patients treated with AVY CAZ was 47.5 years (range 18 to 85 years). Patients were predominantly female (75%) and Caucasian (58.8%). Patients with CrCl less than 70 mL/min were excluded.

Serious adverse reactions occurred in 6/68 (8.8%) of patients receiving AVY CAZ and 2/67 (3.0%) of patients receiving imipenem-cilastatin. Two patients prematurely discontinued treatment with AVY CAZ: one due to an accidental overdose and one due to atrial fibrillation.

Adverse reactions occurring in 10% or more of patients receiving AVYCAZ were constipation and anxiety. Table 5 lists adverse reactions occurring in 5% or more of patients receiving AVYCAZ in the Phase 2 cIAI trial or the Phase 2 cUTI trial.

	ed Adverse Drug Reac nase 2 cIAI Trial or the			ents R eceiving
	Phase 2 cI	A I Trial	Phase 2 cUT I Trial	
	AVYCAZ plus Metronidazole ^a (N = 101)	Meropenem ^b (N = 102)	AVYCAZ ^c (N = 68)	Imipenem- Cilastatin ^d (N = 67)
Gastrointestinal disorders				
V omiting	14%	5%	0%	0%
Nausea	10%	6%	2%	5%
Constipation	4%	1%	10%	3%
A bdominal pain	8%	3%	7%	5%
Upper abdominal pain	1%	0%	7%	2%
Investigations				
Increased blood alkaline phosphatase	9%	7%	3%	2%
Increased alanine aminotransferase	8%	13%	3%	6%
Nervous system disorders				
Dizziness	0%	2%	6%	0%
Psychiatric disorders				
Anxiety	5%	1%	10%	8%

a 2.5 grams (2 grams/0.5 grams) intravenously over 30 minutes every 8 hours (with metronidazole 500 mg intravenously every 8 hours)

b 1 gram intravenously over 30 minutes every 8 hours

c 0.625 grams (0.5 grams/0.125 grams) intravenously over 30 minutes every 8 hours

d 0.5 grams intravenously over 30 minutes every 6 hours

Other Adverse Reactions of AVYCAZ and Ceftazidime

The following selected adverse reactions were reported in AVYCAZ-treated subjects at a rate of less than 5% in the Phase 2 trials and are not described elsewhere in the labeling.

Blood and lymphatic disorders - Eosinophilia, Thrombocytopenia Investigations - Increased gamma-glutamyltransferase, Prolonged prothrombin time Metabolism and nutrition disorders - Hypokalemia Renal and urinary disorders - Acute renal failure, Renal impairment Skin and subcutaneous tissue disorders - Rash

Additionally, adverse reactions reported with ceftazidime alone that were not reported in AVY CAZ clinical trials are listed below:

Blood and lymphatic disorders - Agranulocytosis, Hemolytic anemia, Leukopenia, Lymphocytosis, Neutropenia, Thrombocytosis

General disorders and administration site conditions - Infusion site inflammation, Injection site hematoma, Injection site phlebitis, Injection site thrombosis

Hepatobiliary disorders ⁻ Jaundice

Infections and infestations - Candidiasis

Investigations - Increased blood lactate dehydrogenase

Nervous system disorders - Dysgeusia, Paresthesia

Renal and urinary disorders - Tubulointerstitial nephritis

Reproductive and breast disorders - Vaginal inflammation

Skin and subcutaneous tissue disorders - Angioedema, Erythema multiforme, Pruritus, Stevens-Johnson syndrome, Toxic epidermal necrolysis, Urticaria

Laboratory Changes

Seroconversion from a negative to a positive direct Coombs test result occurred in 6/82 (7.3%) of patients receiving AVYCAZ plus metronidazole and 2/84 (2.4%) of patients receiving meropenem in the cIAI trial. Seroconversion from a negative to a positive direct Coombs test result occurred in 1/52 (1.9%) of patients receiving AVYCAZ and 5/60 (8.3%) of patients receiving imipenem cilastatin in the cUTI trial. No adverse reactions representing hemolytic anemia were reported in any treatment group.

7 DRUG INTERACTIONS

7.1 Probenecid

In vitro, avibactam is a substrate of OAT1 and OAT3 transporters which might contribute to the active uptake from the blood compartment, and thereby its excretion. As a potent OAT inhibitor, probenecid inhibits OAT uptake of avibactam by 56% to 70% in vitro and, therefore, has the potential to decrease the elimination of avibactam when co-administered. Because a clinical interaction study of AVY CAZ or avibactam alone with probenecid has not been conducted, co-administration of AVY CAZ with probenecid is not recommended [see Clinical Pharmacology (12.3)].

7.2 Drug/L aboratory Test Interactions

The administration of ceftazidime may result in a false-positive reaction for glucose in the urine with certain methods. It is recommended that glucose tests based on enzymatic glucose oxidase reactions be used.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category B

A nimal reproductive toxicity studies have been conducted with ceftazidime and with avibactam. However, there are no adequate and well-controlled studies of AVY CAZ, ceftazidime, or avibactam in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used in pregnancy only if clearly needed.

Ceftazidime

Reproduction studies have been performed in mice and rats at doses up to 40 times the human dose and showed no evidence of harm to the fetus due to ceftazidime.

Avibactam

A vibactam was not teratogenic in rats or rabbits. In the rat, intravenous studies showed no embryofetal toxicity at doses of 1000 mg/kg/day, approximately 9 times the human dose based on exposure (AUC). In a rat pre- and postnatal study at up to 825 mg/kg/day intravenously (11 times the human exposure based on AUC), there were no effects on pup growth and viability. A dose-related increase in the incidence of renal pelvic and ureter dilatation was observed in female weanling pups that was not associated with pathological changes to renal parenchyma or renal function, with renal pelvic dilatation persisting after female weanling pups became adults.

Reproductive studies performed during early pregnancy in rabbits showed no effects on embryofetal development at doses of 100 mg/kg, twice the human exposure (AUC). At higher doses, increased post-implantation loss, lower mean fetal weights, delayed ossification of several bones and other anomalies were observed.

8.3 Nursing Mothers

Ceftazidime is excreted in human milk in low concentrations. It is not known whether avibactam is excreted into human milk, although avibactam was shown to be excreted in the milk of rats in a dose dependent manner. Exercise caution if AVYCAZ is to be administered to a nursing woman.

8.4 Pediatric Use

Safety and effectiveness in patients less than 18 years of age have not been established.

8.5 Geriatric Use

Of the 169 patients treated with AVY CAZ in the Phase 2 cIAI and cUTI trials, 18 (10.7%) were 65 years of age and older. Because of limited data, differences in outcomes or specific risks with AVY CAZ cannot be ruled out for patients 65 years of age and older.

Ceftazidime and avibactam are excreted primarily by the kidney, and the risk of adverse reactions may be greater in patients with renal impairment. Because elderly patients are more likely to have renal impairment, care should be taken in dose selection in this age group and it may be useful to monitor renal function. Healthy elderly subjects had 17% greater exposure relative to healthy young subjects when administered the same single dose of avibactam, which may have been related to decreased renal function in the elderly subjects. Dosage adjustment for elderly patients should be based on renal function [see Dosage and Administration (2.2) and Clinical Pharmacology (12.3)].

8.6 Renal Impairment

Dosage adjustment is required in patients with moderately or severely impaired renal function (CrCl 50 mL/min or less). For patients with changing renal function, CrCl should be monitored at least daily and dosage of AVY CAZ adjusted accordingly. Both ceftazidime and avibactam are hemodialyzable; thus, AVY CAZ should be administered after hemodialysis on hemodialysis days [see Dosage and Administration (2.2) and Clinical Pharmacology (12.3)].

10 OVERDOSAGE

In the event of overdose, discontinue AVY CAZ and institute general supportive treatment.

Ceftazidime and avibactam can be removed by hemodialysis. In subjects with ESRD administered 1 gram ceftazidime, the mean total recovery in dialysate following a 4-hour hemodialysis session was 55% of the administered dose. In subjects with ESRD administered 100 mg avibactam, the mean total recovery in dialysate following a 4-hour hemodialysis session started 1 hour after dosing was approximately 55% of the dose.

No clinical information is available on the use of hemodialysis to treat AVY CAZ overdosage [see Clinical Pharmacology (12.3)].

11 DESCRIPTION

AVY CAZ is an antibacterial combination product consisting of the semisynthetic cephalosporin ceftazidime pentahydrate and the beta-lactamase inhibitor avibactam sodium for intravenous administration.

Ceftazidime

Ceftazidime is a semisynthetic, beta-lactam antibacterial drug. It is the pentahydrate of (6R,7R,Z)-7-(2-(2-aminothiazol-4-yl)-2-(2-carboxypropan-2-yloxyimino)acetamido)-8-oxo-3-(pyridinium-1-ylmethyl)-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylate. Its molecular weight is 636.6. The empirical formula is $C_{22} H_{32} N_6 O_{12} S_2$.

Figure 1 Chemical structure of ceftazidime pentahydrate

Avibactam

A vibactam sodium chemical name is sodium [(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl] sulfate. Its molecular weight is 287.23. The empirical formula is $C_7 H_{10} N_3 O_6 SNa$.

Figure 2 Chemical structure of avibactam sodium

AVY CAZ 2.5 grams (ceftazidime and avibactam) for injection is a white to yellow sterile powder for constitution consisting of ceftazidime pentahydrate and avibactam sodium packaged in glass vials. The formulation also contains sodium carbonate.

Each AVY CAZ 2.5 grams single-dose vial contains ceftazidime 2 grams (equivalent to 2.635 grams sterile ceftazidime pentahydrate/sodium carbonate) and avibactam 0.5 grams (equivalent to 0.551 grams sterile avibactam sodium). The sodium carbonate content of the mixture is 239.6 mg/vial. The total sodium content of the mixture is approximately 146 mg (6.4 mEq)/vial.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

AVY CAZ is an antibacterial drug [see Clinical Pharmacology (12.4)].

12.2 Pharmacodynamics

As with other beta-lactam antimicrobial drugs, the time that unbound plasma concentrations of ceftazidime exceeds the AVY CAZ minimum inhibitory concentration (MIC) against the infecting organism has been shown to best correlate with efficacy in a neutropenic murine thigh infection model with Enterobacteriaceae and Pseudomonas aeruginosa. The time above a threshold concentration has been determined to be the parameter that best predicts the efficacy of avibactam in in vitro and in vivo nonclinical models.

Cardiac Electrophysiology

In a thorough QT study, a supratherapeutic dose of ceftazidime (3 grams) was investigated for QT effects in combination with a supratherapeutic dose of avibactam (2 grams) given as a 30-minute single infusion. No significant effect on QT_cF interval was detected at peak plasma concentration or at any other time. The largest 90% upper bound for the placebo corrected mean change from baseline was 5.9 ms. There were no QT_cF intervals greater than 450 ms, nor were there any QT_cF interval changes from baseline greater than 30 ms.

12.3 Pharmacokinetics

The mean pharmacokinetic parameters for ceftazidime and avibactam in healthy adult male subjects with normal renal function after single and multiple 2-hour intravenous infusions of AVY CAZ 2.5 grams (ceftazidime 2 grams and avibactam 0.5 grams) administered every 8 hours are summarized in Table 6.

Pharmacokinetic parameters of ceftazidime and avibactam were similar for single and multiple dose administration of AVY CAZ and were similar to those determined when ceftazidime or avibactam were administered alone.

T able 6.	Pharmacokinetic Parameters (Geometric Mean [% CV]) of Ceftazidime and Avibactam Following Administration of AVY CAZ 2.5 grams (ceftazidime 2 grams and avibactam 0.5 grams) in Healthy Adult Male Subjects	
	Ceftazidime	Avibactam

	Ceftazidime		Avibactam	
Parameter	Single AVYCAZ 2.5 grams ^a Dose Administered as a 2-hour Infusion (n = 16)	Multiple AVYCAZ 2.5 grams ^a Doses Administered every 8 hours as 2-hour Infusions for 11 Days (n = 16)		Multiple AVYCAZ 2.5 grams ^a Doses Administered every 8 hours as 2-hour Infusions for 11 Days (n = 16)
C _{max} (mg/L)	88.1 (14)	90.4 (16)	15.2 (14)	14.6 (17)
AUC (mg-h/L) ^b	289 (15) ^c	291 (15)	42.1 (16) ^d	38.2 (19)
T _{1/2} (h)	3.27 (33) ^c	2.76 (7)	2.22 (31) ^d	2.71 (25)
CL (L/h)	6.93 (15) ^c	6.86 (15)	11.9 (16) ^d	13.1 (19)
V _{ss} (L)	18.1 (20) ^c	17 (16)	23.2 (23) ^d	22.2 (18)

CL = plasma clearance; C_{max =} maximum observed concentration; d T_{1/2} = terminal elimination half-life; V_{ss} (L) = volume of distribution at steady state

The C_{max} and AUC of ceftazidime increase in proportion to dose. A vibactam demonstrated approximately linear pharmacokinetics across the dose range studied (50 mg to 2000 mg) for single intravenous administration. No appreciable accumulation of ceftazidime or avibactam was observed following multiple intravenous infusions of AVY CAZ 2.5 grams (ceftazidime 2 grams and avibactam 0.5 grams) administered every 8 hours for up to 11 days in healthy adults with normal renal function.

Distribution

Less than 10% of ceftazidime was protein bound. The degree of protein binding was independent of concentration. The binding of avibactam to human plasma proteins was low (5.7% to 8.2%) and was similar across the range of concentrations tested in vitro (0.5 to 50 mg/L).

The steady-state volumes of distribution of ceftazidime and avibactam were 17 L and 22.2 L, respectively in healthy adults following multiple doses of AVY CAZ 2.5 grams (ceftazidime 2 grams and avibactam 0.5 grams) infused every 8 hours over 2 hours for 11 days.

Metabolism

Ceftazidime is mostly (80% to 90% of the dose) eliminated as unchanged drug. No metabolism of avibactam was observed in human liver preparations (microsomes and hepatocytes). Unchanged avibactam was the major drug-related component in human plasma and urine after a single intravenous dose of 0.5 grams ¹⁴C-labelled avibactam.

Excretion

Both ceftazidime and avibactam are excreted mainly by the kidneys.

A pproximately 80% to 90% of an intravenous dose of ceftazidime is excreted unchanged by the kidneys over a 24-hour period. A fter the intravenous administration of single 0.5-grams or 1-gram doses, approximately 50% of the dose appeared in the urine in the first 2 hours. An additional 20% was excreted between 2 and 4 hours after dosing, and approximately another 12% of the dose appeared in the urine between 4 and 8 hours later. The

a 2 grams ceftazidime + 0.5 grams avibactam.

b AUC_{0-inf} (area under concentration-time curve from time 0 to infinity) reported for single-dose administration; AUC 0-tau (area under concentration curve over dosing interval) reported for multiple-dose administration.

c n = 15.

d n = 13.

elimination of ceftazidime by the kidneys resulted in high therapeutic concentrations in the urine. The mean renal clearance of ceftazidime was approximately 100 mL/min. The calculated plasma clearance of approximately 115 mL/min indicated nearly complete elimination of ceftazidime by the renal route.

Following administration of a single 0.5-grams intravenous dose of radiolabelled avibactam, an average of 97% of administered radioactivity was recovered from the urine, with over 95% recovered within 12 hours of dosing. An average of 0.20% of administered total radioactivity was recovered in feces within 96 hours of dosing. An average of 85% of administered avibactam was recovered from the urine as unchanged drug within 96 hours, with over 50% recovered within 2 hours of the start of the infusion. Renal clearance was 158 mL/min, which is greater than the glomerular filtration, suggesting that active tubular secretion contributes to the excretion of avibactam in addition to glomerular filtration.

Specific Populations

Renal Impairment

Ceftazidime is eliminated almost solely by the kidneys; its serum half-life is significantly prolonged in patients with impaired renal function.

The clearance of avibactam was significantly decreased in subjects with mild (CrCl 50 to 80 mL/min, n = 6), moderate (CrCl 30 to 50 mL/min, n = 6), and severe (CrCl 30 mL/min or less, not requiring hemodialysis; n = 6) renal impairment compared to healthy subjects with normal renal function (CrCl greater than 80 mL/min, n = 6) following administration of a single 100 - mg intravenous dose of avibactam. The slower clearance resulted in increases in systemic exposure (AUC) of avibactam of 2.6-fold, 3.8-fold, and 7-fold in subjects with mild, moderate, and severe renal impairment, respectively, compared to subjects with normal renal function.

A single 100-mg dose of avibactam was administered to subjects with ESRD (n = 6) either 1 hour before or after hemodialysis. The avibactam AUC following the post-hemodialysis infusion was 19.5-fold the AUC of healthy subjects with normal renal function. Avibactam was extensively removed by hemodialysis, with an extraction coefficient of 0.77 and a mean hemodialysis clearance of 9.0 L/h. A pproximately 55% of the avibactam dose was removed during a 4-hour hemodialysis session.

Dosage adjustment of AVY CAZ is recommended in patients with moderate and severe renal impairment and end-stage renal disease. Population PK models for ceftazidime and avibactam were used to conduct simulations for patients with impaired renal function. Simulations demonstrated that the recommended dose adjustments [see Dosage and Administration (2.2)] provide comparable exposures of ceftazidime and avibactam in patients with moderate and severe renal impairment and end-stage renal disease to those in patients with normal renal function or mild renal impairment. Because the exposure of both ceftazidime and avibactam is highly dependent on renal function, monitor CrCl at least daily and adjust the dosage of AVY CAZ accordingly for patients with changing renal function [see Dosage and Administration (2.2)].

Hepatic Impairment

The presence of hepatic dysfunction had no effect on the pharmacokinetics of ceftazidime in individuals administered 2 grams intravenously every 8 hours for 5 days.

The pharmacokinetics of avibactam in patients with hepatic impairment have not been established. A vibactam does not appear to undergo significant hepatic metabolism, therefore the systemic clearance of avibactam is not expected to be significantly affected by hepatic impairment.

Dose adjustments are not currently considered necessary for AVYCAZ in patients with impaired hepatic function.

Geriatric Patients

Following single-dose administration of 0.5 grams avibactam as a 30-minute infusion the mean AUC for avibactam was 17% higher in healthy elderly subjects (65 years of age and older, n = 16) than in healthy young adult subjects (18 to 45 years of age, n = 17). There was no statistically significant age effect for avibactam C_{max} .

No dose adjustment is recommended based on age. Dosage adjustment for AVYCAZ in elderly patients should be based on renal function [see Dosage and Administration (2.2)].

Gender

Following single-dose administration of 0.5 grams avibactam as a 30-minute infusion, healthy male subjects (n = 17) had 18% lower avibactam C_{max} values than healthy female subjects (n = 16). There was no gender effect for avibactam AUC parameters.

No dose adjustment is recommended based on gender.

Drug Interaction Studies

Avibactam at clinically relevant concentrations does not inhibit the cytochrome P450 isoforms CY P1A2, CY P2A6, CY P2B6, CY P2C8, CY P2C9, CY P2C19, CY P2D6, CY P2E1 and CY P3A4/5 in vitro in human liver microsomes. Avibactam showed no potential for in vitro induction of CY P1A2, 2B6, 2C9 and 3A4 isoenzymes in human hepatocytes. A gainst CY P2E1, avibactam showed a slight induction potential at very high concentrations that exceed any clinically relevant exposure. Ceftazidime was evaluated independently in human hepatocytes and showed no induction potential on the activity or mRNA expression of CY P1A1/2, CY P2B6, and CY P3A4/5.

Neither ceftazidime nor avibactam was found to be an inhibitor of the following hepatic and renal transporters in vitro at clinically relevant concentrations: MDR1, BCRP, OAT1, OAT3, OATP1B1, OATP1B3, BSEP, MRP4, OCT1 and OCT2. Avibactam was not a substrate of MDR1, BCRP, MRP4, or OCT2, but was a substrate of human OAT1 and OAT3 kidney transporters based on results generated in human embryonic kidney cells expressing these transporters. Probenecid inhibits 56% to 70% of the uptake of avibactam by OAT1 and OAT3 in vitro. Ceftazidime does not inhibit avibactam transport mediated by OAT1 and OAT3. The clinical impact of potent OAT inhibitors on the pharmacokinetics of avibactam is not known. Co-administration of AVY CAZ with probenecid is not recommended [see Drug Interactions (7.1)].

A dministration of AVY CAZ 2.5 grams (ceftazidime 2 grams and avibactam 0.5 grams) to healthy male subjects (n = 28) as a 2-hour infusion following a 1-hour infusion of metronidazole every 8 hours for 3 days, did not affect the C_{max} and AUC values for avibactam or ceftazidime compared to administration of AVY CAZ 2.5 grams (ceftazidime 2 grams and avibactam 0.5 grams) alone. A dministration of 0.5 grams metronidazole to healthy male subjects as a 1-hour infusion before a 2-hour infusion of AVY CAZ 2.5 grams (ceftazidime 2 grams and avibactam 0.5 grams) every 8 hours for 3 days did not affect the C_{max} and AUC of metronidazole compared to administration of 0.5 grams metronidazole alone.

12.4 Microbiology

Mechanism of Action

The ceftazidime component of AVY CAZ is a cephalosporin antibacterial drug with in vitro activity against certain gram-negative and gram-positive bacteria. The bactericidal action of ceftazidime is mediated through binding to essential penicillin-binding proteins (PBPs). The avibactam component of AVY CAZ is a non-beta-lactam beta-lactamase inhibitor that inactivates some beta-lactamases and protects ceftazidime from degradation

by certain beta-lactamases. A vibactam does not decrease the activity of ceftazidime against ceftazidimesusceptible organisms.

AVY CAZ demonstrated in vitro activity against Enterobacteriaceae in the presence of some beta-lactamases and extended-spectrum beta-lactamases (ESBLs) of the following groups: TEM, SHV, CTX-M, Klebsiella pneumoniae carbapenemase (KPCs), AmpC, and certain oxacillinases (OXA). AVY CAZ also demonstrated in vitro activity against P. aeruginosa in the presence of some AmpC beta-lactamases, and certain strains lacking outer membrane porin (OprD). AVY CAZ is not active against bacteria that produce metallo-beta lactamases and may not have activity against gram-negative bacteria that overexpress efflux pumps or have porin mutations.

Cross-Resistance

No cross-resistance with other classes of antimicrobials has been identified. Some isolates resistant to other cephalosporins (including ceftazidime) and to carbapenems may be susceptible to AVY CAZ.

Interaction with Other Antimicrobials

In vitro studies have not demonstrated antagonism between AVYCAZ and colistin, levofloxacin, linezolid, metronidazole, tigecycline, tobramycin, or vancomycin.

A ctivity against Ceftazidime-Nonsusceptible Bacteria in A nimal Infection Models

Avibactam restored activity of ceftazidime in animal models of infection (e.g. thigh infection, pyelonephritis, systemic infection induced by intraperitoneal injection) caused by ceftazidime non-susceptible beta-lactamase-producing (e.g., ESBL, KPC and AmpC) gram-negative bacteria.

AVY CAZ has been shown to be active against most isolates of the following bacteria, both in vitro and in clinical infections [see Indications and Usage (1.1) and (1.2)].

Complicated Intra-abdominal Infections (cIAI)

- Gram-negative bacteria
 - o Escherichia coli
 - o Enterobacter cloacae
 - o Klebsiella pneumoniae
 - o Klebsiella oxytoca
 - o Proteus mirabilis
 - o Providencia stuartii
 - o Pseudomonas aeruginosa

Complicated Urinary Tract Infections (cUTI), including Pyelonephritis

- A erobic Gram-negative bacteria
 - o Citrobacter freundii
 - o Citrobacter koseri
 - o Escherichia coli
 - o Pseudomonas aeruginosa
 - o Enterobacter aerogenes
 - o Enterobacter cloacae
 - o Proteus spp.
 - o Klebsiella pneumoniae

The following in vitro data are available, but their clinical significance is unknown. AVYCAZ exhibits in vitro MIC values of #8 mcg/mL against most († 90%) isolates of the following bacteria; however, the safety and

effectiveness of AVYCAZ in treating clinical infections due to these bacteria have not been established in adequate and well-controlled clinical trials.

- Gram-negative bacteria
 - o Morganella morganii
 - o Providencia rettgeri
 - o Serratia marcescens

Susceptibility Test Methods

When available, the clinical microbiology laboratory should provide the results of in vitro susceptibility test results for antimicrobial drugs used in local hospitals and practice areas to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug product for treatment.

Dilution Techniques

Quantitative methods are used to determine antimicrobial MIC values. These MIC values provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MIC values should be determined using a standardized test method (broth or agar)¹⁻³. MIC values should be determined using serial dilutions of ceftazidime combined with a fixed concentration of 4 mcg/mL of avibactam. Broth dilution MIC values need to be read within 18 hours because of degradation of ceftazidime activity by 24 hours. The MIC values should be interpreted according to the criteria in Table 7.

<u>Diffusion Techniques</u>

Quantitative methods that require measurement of zone diameters can also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. The zone size provides an estimate of the susceptibility of bacteria to antimicrobial compounds. The zone size should be determined using a standardized method². This procedure uses paper disks impregnated with 30 mcg of ceftazidime and 20 mcg avibactam to test the susceptibility of bacteria to AVY CAZ. The disk interpretive criteria are provided in Table 7.

Table 7. Susceptibility Interpretive Criteria for Ceftazidime/Avibactam				
Pathogen	Minimum Inhibitory	Concentration (mg/L)	Disk Diffusion Zone Diameter (mm)	
	S	R	S	R
E nterobacteri aceae	Ħ8/4	ከ 16/4	ħ 21	Ħ20
Pseudomonas aeruginosa	Ħ8/4	ħ 16/4	ħ 18	Ħ17

A report of `Susceptible_ indicates that the antimicrobial drug is likely to inhibit growth of the pathogen if the antimicrobial drug reaches the concentration at the site of infection. A report of `Resistant_ indicates that the antimicrobial drug is not likely to inhibit growth of the pathogen if the antimicrobial drug reaches the concentrations usually achievable at the site of infection; other therapy should be selected.

Quality Control

Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of supplies and reagents used in the assay, and the techniques of the individuals performing the test¹⁻³. Standard AVY CAZ powder should provide the following range of MIC values provided in Table 8. For the diffusion technique using the 30 mcg ceftazidime/20-mcg avibactam disk, the criteria provided in Table 8 should be achieved.

Table 8. Acceptable Quality Control Ranges for Susceptibility Testing				
Quality Control Organism	Minimum Inhibitory Concentration ^a (mg/L)	Disk Diffusion Zone Diameter (mm)		
Staphylococcus aureus ATCC 29213	4 - 16	-		
Staphylococcus aureus ATCC 25923	-	16 - 22		
Escherichia coli ATCC 25922	0.06 - 0.5	27 - 35		
Escherichia coli ATCC 35218	0.03 - 0.12	28 - 35		
Pseudomonas aeruginosa ATCC 27853	0.5 - 4	25 - 31		
Klebsiella pneumoniae ATCC 700603 ^b	0.25 - 2	-		
Haemophilus influenzae ATCC 49247	0.06 - 0.5	28 - 34		
Haemophilus influenzae ATCC 49766	0.015 - 0.06	-		
Streptococcus pneumoniae ATCC 49619	0.25 - 2	-		

a MIC for ceftazidime in the presence of a fixed concentration of 4 mg/L of avibactam.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Ceftazidime and avibactam were each evaluated for mutagenic potential in several in vitro and in vivo assays. Ceftazidime was negative for mutagenicity in a mouse micronucleus test and an A mes test. A vibactam was negative for genotoxicity in the A mes assay, unscheduled DNA synthesis, chromosomal aberration assay, and a rat micronucleus study.

A vibactam had no adverse effects on fertility of male and female rats given up to 1 g/kg/day (approximately 20 fold higher than the recommended clinical dose on a body surface area basis). There was a dose-related increase in the percentage of pre- and post-implantation loss relative to controls, resulting in a lower mean litter size at doses 0.5 g/kg and greater with intravenous administration to female rats beginning 2 weeks prior to mating.

14 CLINICAL STUDIES

The determination of efficacy of AVY CAZ was supported in part by the previous findings of the efficacy and safety of ceftazidime for the treatment of cIAI and cUTI. The contribution of avibactam to AVY CAZ was primarily established in vitro and in animal models of infection [see Clinical Pharmacology (12.4)]. AVY CAZ was studied in two Phase 2 randomized, blinded, active-controlled, multicenter trials, one each in cIAI and cUTI, including pyelonephritis. These trials were not designed with any formal hypotheses for inferential testing against the active comparators.

15 REFERENCES

- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard - Tenth Edition. CLSI document M07- A10, Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2015.
- 2. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Diffusion Susceptibility Tests; Approved Standard ⁻ Twelfth Edition. CLSI document M02-A12, Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2015.

b K. pneumoniae ATCC 700603 should be tested against ceftazidime and avibactam and ceftazidime alone to confirm the activity of avibactam in the combination and to ensure that the plasmid encoding the beta-lactamase has not been lost in this strain. The acceptable range for ceftazidime alone is greater than 16 mg/L.

3. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth Informational Supplement, CLSI document M100-S25, Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2015.

16 HOW SUPPLIED/STORAGE AND HANDLING

AVY CAZ 2.5 grams (ceftazidime and avibactam) for injection is supplied in single-dose, clear glass vial containing: ceftazidime 2 grams (equivalent to 2.635 grams of ceftazidime pentahydrate/sodium carbonate) and avibactam 0.5 grams (equivalent to 0.551 grams of avibactam sodium). Vials are supplied as - individual vial (NDC#0456-2700-01) and in cartons containing 10 vials (NDC#0456-2700-10)

AVYCAZ vials should be stored at 25éC (77éF); excursions permitted between 15éC and 30éC (59éF and 86éF) [See USP Controlled Room Temperature]. Protect from light. Store in carton until time of use.

17 PATIENT COUNSELING INFORMATION

Serious Allergic Reactions

A dvise patients, their families, or caregivers that allergic reactions, including serious allergic reactions, could occur that require immediate treatment. Ask them about any previous hypersensitivity reactions to AVY CAZ, other beta-lactams (including cephalosporins), or other allergens [see Warnings and Precautions (5.2)].

Potentially Serious Diarrhea

A dvise patients, their families, or caregivers that diarrhea is a common problem caused by antibacterial drugs. Sometimes, frequent watery or bloody diarrhea may occur and may be a sign of a more serious intestinal infection. If severe watery or bloody diarrhea develops, tell them to contact his or her healthcare provider [see Warnings and Precautions (5.3)].

Nervous System Reactions

A dvise patients, their families, or caregivers that neurological adverse reactions can occur with AVYCAZ use. Instruct patients their families, or caregivers to inform a healthcare provider at once of any neurological signs and symptoms, including encephalopathy (disturbance of consciousness including confusion, hallucinations, stupor, and coma), myoclonus, and seizures, for immediate treatment, dosage adjustment, or discontinuation of AVYCAZ [see Warnings and Precautions (5.4)].

Antibacterial Resistance

Counsel patients, their families, or caregivers that antibacterial drugs including AVYCAZ should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When AVYCAZ is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by AVYCAZ or other antibacterial drugs in the future [see Warnings and Precautions (5.5)].

Distributed by:

Forest Pharmaceuticals, Inc. Subsidiary of Forest Laboratories, LLC Cincinnati, Ohio 45209

Manufactured by:

GlaxoSmithKline Manufacturing S.p.A. V erona, 37135 Italy

AVY CAZTM is a trademark of Actavis, Inc. or its affiliates. ATCC is a registered trademark of the American Type Culture Collection. Baxter[÷] is a registered trademark and Mini-Bag Plus^ù is a trademark of Baxter International Inc. [®] 2015 Actavis. All rights reserved.