

Clinical Evidence Summary Expandable Interbody Devices

Article	Description	Results/Summary

ALTERA®

Massie et al. 2018

Assessment of radiographic and clinical outcomes of an articulating expandable interbody cage in minimally invasive transforaminal lumbar interbody fusion for spondylolisthesis

Neurosurg Focus 44 (1):E8, 2018

Retrospective review of 1- and 2-level MIS TLIF radiographic and clinical outcomes using ALTERA® expandable spacer

Cohorts: 39 patients (1-level) 5 patients (2-level) MIS TLIF using ALTERA® expandable spacer provided significant restoration of segmental height and lordosis, with improvement in sagittal balance parameters and significant reduction in pain and disability.

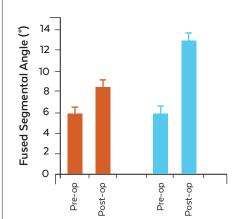
- Spondylolisthesis was corrected by 4.3mm on average (preoperative=6.69mm, postoperative=2.39mm, p<0.001)
- Segmental lordosis improved by 4.94° on average (preoperative=5.63°, postoperative=10.58°, p<0.001)
- Segmental height increased by 3.1mm on average (preoperative=5.09mm, postoperative=8.19mm, p<0.001)
- · Overall fusion rate was 96%
- Favorable outcomes demonstrated with 1- and 2-level MIS TLIF

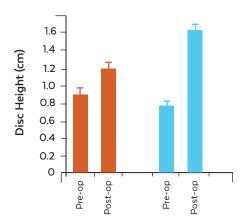
Hawasli et al. 2017

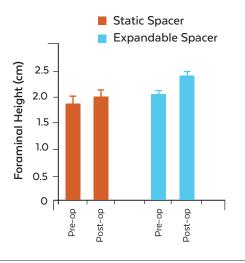
Minimally Invasive transforaminal lumbar interbody fusion with expandable versus static interbody devices, radiographic assessment of sagittal segmental and pelvic parameters

Neurosurg Focus 43 (2):E10, 2017

Retrospective review of clinical data following MIS TLIF using the ALTERA® spacer in 44 patients (48 interbody spacers)


Cohorts:


28 patients with 29 expandable spacers
16 patients with 19 static spacers


MIS TLIF with ALTERA® led to a greater and longer lasting increase in disc height, foraminal height, and index level segmental lordosis than static interbody devices, especially in patients with a collapsed disc space.

- Disc height was 32.7% greater in patients with expandable interbody devices than those with static interbody devices
- Foraminal height was 14.8% greater in patients with expandable interbody devices when compared with patients with static devices
- Segmental lordosis was 41.9% greater in patients with expandable interbody devices compared to static interbody devices
- Mean change in ODI score was 22.3 for the expandable interbody group and 13.6 for the static group

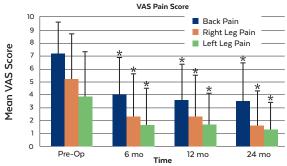
Hawasli et al. 2017 Outcomes

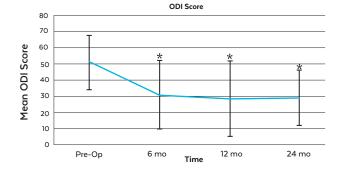
CALIBER®

Kim et al. 2016

Minimally invasive transforaminal lumbar interbody fusion using expandable technology: a clinical and radiographic analysis of 50 patients

World Neurosurg 90:228-235, 2016


Prospective clinical data from 50 patients treated with CALIBER® expandable interbody spacer and posterior stabilization


Cohorts:

38 patients (1-level) MIS TLIF 12 patients (2-level) MIS TLIF 62 operative levels CALIBER® expandable interbody spacer led to significant improvement in clinical and radiographic outcomes after MIS TLIF, including intervertebral disc height restoration and high fusion rates, with no evidence of device-related complications.

- Mean postoperative VAS back and leg pain scores and ODI scores decreased significantly at 6, 12, and 24 months compared to preoperative scores (p<0.05)
- Postoperative disc height (8.3±2.7 vs. 11.3±1.9mm) increased significantly and was maintained through 24 months
- Postoperative radiographs showed no evidence of spacer migration, subsidence, or collapse
- Radiographic evidence of fusion was seen at all operative levels at 12 months (93%, 54/58) and 24 months (97%, 28/29)

Kim et al. 2016 Outcomes

*Indicates statistically significant differences at P < 0.05 from the preoperative time interval

CALIBER®-L

Frisch et al. 2018

Clinical and radiographic analysis of expandable versus static lateral lumbar interbody fusion devices with two-year follow-up

J Spine Surg 4(1):62-71, 2018

Retrospective comparison of clinical and radiographic outcomes and device-related complications in patients treated with static and CALIBER®-L expandable spacers following LLIF

Cohorts

29 patients had LLIF with static spacer

27 patients had LLIF with CALIBER®-L expandable spacer

LLIF using CALIBER®-L expandable spacers resulted in similar clinical and radiographic outcomes when compared to static spacers, and led to a lower subsidence rate.

- Mean VAS and ODI scores improved significantly from preoperative to 24 months follow-up in both groups (p<0.05)
- Preoperative intervertebral and neuroforaminal height increased significantly in both groups (p<0.01)
- Evidence of radiographic fusion was observed in all operative levels in both static and expandable spacer groups by 24 months
- Implant subsidence was reported in 16.1% of static levels and none of the expandable levels (p<0.01)

RISE®-L

Frisch et al. 2017

Static versus expandable interbody spacers: preliminary 1-year clinical and radiographic results

J Clin Neurol Neurosurg Spine 1(1):113, 2017

Retrospective comparison of clinical and radiographic outcomes of expandable versus static interbody spacers following minimally invasive LLIF in 64 patients

Cohorts:

32 patients with RISE®-L expandable spacer

32 patients with static spacer

Patients in the RISE®-L expandable spacer group experienced a greater increase in segmental lordosis and a lower subsidence rate than those in the static group.

- Patients treated with RISE®-L demonstrated a 17% increase in segmental lordosis from 14°±7.9° preoperatively to 16.4°±8.8° 12 month postoperative (p=0.01)
- No significant increase in segmental lordosis was observed in the static group (p=0.40)
- Subsidence was greater in the static group (32.4%) than the expandable group (9.8%) (p<0.01)