
Clinical Paper

Craniofacial Anomalies

Int. J. Oral Maxillofac. Surg. 2018; 47: 35–43
http://dx.doi.org/10.1016/j.ijom.2017.07.020, available online at http://www.sciencedirect.com
Precise osteotomies for
mandibular distraction in infants
with Robin sequence using
virtual surgical planning
C.M. Resnick: Precise osteotomies for mandibular distraction in infants with Robin
sequence using virtual surgical planning. Int. J. Oral Maxillofac. Surg. 2018; 47: 35–
43. ã 2017 The Author(s). Published by Elsevier Ltd on behalf of International
Association of Oral and Maxillofacial Surgeons. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abstract. Mandibular distraction osteogenesis (MDO) has become the first-line
operation in many centers for the management of obstructive sleep apnea (OSA) in
infants with (Pierre) Robin sequence (RS) not relieved by non-surgical approaches.
Preoperative virtual surgical planning (VSP) may improve precision and decrease
complications for this operation. This article reports a retrospective study of RS
infants who underwent MDO for OSA using preoperative VSP and three-
dimensionally printed cutting guides performed by one surgeon. Seventeen subjects
who had MDO at a mean age of 87 � 96 days were included. Maxillofacial
computed tomography scans were obtained 15 � 7 days prior to MDO. Osteotomy
designs included linear (n = 4, 23.5%), inverted-L (n = 11, 64.7%), and multi-
angular (n = 2, 11.8%). Cutting guides were used successfully and osteotomies were
created as planned in all cases. Devices were removed 67 � 15.6 days after
placement. Bone formation in the distraction gap was seen in all cases at device
removal. All patients had successful airway outcomes. There were no major and
four minor complications during the follow-up period of 458 � 267 days. In
conclusion, MDO is a successful procedure for the management of OSA associated
with RS in infants, and VSP facilitates its precise design and execution.
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Mandibular distraction osteogenesis
(MDO) has become the first-line operation
in many centers for infants with airway
obstruction associated with (Pierre) Robin
sequence (RS) who have failed non-inva-
sive management1. This procedure boasts
high rates for successful resolution of
obstructive sleep apnea (OSA) and avoid-
ance of tracheostomy2–12. Long-term
complications associated with the position
of the osteotomies, such as injury to de-
veloping teeth and the inferior alveolar
nerve, however, are common1,13–15.
Preoperative virtual surgical planning

(VSP) and the fabrication of three-dimen-
sionally (3D) printed splints and/or cutting
guides for intraoperative use have been
shown to improve outcomes and decrease
operative times and costs in other areas of
maxillofacial surgery16–19. For neonatal
MDO, VSP has been reported to aid in
device selection and placement, facilitate
vector management, and simplify the
operation20. Planning may also improve
ation of Oral and Maxillofacial Surgeons. This is an
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Fig. 1. Osteotomy designs for mandibular distraction. (A) A linear oblique osteotomy avoids
the most posterior developing tooth (grey shadow) and overlaps the inferior alveolar nerve.
Numbers indicate bone thickness from the buccal cortex to either the inferior alveolar nerve or a
developing dental structure (green and grey). The screw holes outlined in black are those that are
indexed in the cutting guide. (B) An inverted-L osteotomy is proximal to dental structures and
ends anterior to the coronoid process. (C) A multi-angular osteotomy is necessary to avoid
forming teeth (green and grey shadows) and remain anterior to the coronoid process in this
patient.
precision and decrease complications.
However, only single case reports of
VSP and 3D printing for MDO in infants
with RS currently exist in the literature.
The purpose of this study was to present

a series of infants with RS who underwent
MDO using preoperative VSP and 3D
printed cutting guides. The specific aims
were to (1) document the protocol used at
Boston Children’s Hospital for planning
and execution of MDO in infants with RS
using VSP, (2) evaluate osteotomy designs
used to minimize damage to vital struc-
tures, and (3) present intraoperative find-
ings and airway outcomes.

Materials and methods

Study design and subjects

This study analyzed a retrospective case
series of infants at Boston Children’s Hos-
pital with OSA associated with RS who
presented from February 2014 to Decem-
ber 2016. Inclusion criteria were the fol-
lowing: (1) a clinical diagnosis of RS
made by a member of the Craniofacial
Center, including micrognathia, glossop-
tosis, and airway obstruction; (2) OSA that
could not be completely treated by non-
operative approaches and/or intubation
with inability to extubate; (3) use of
MDO by one surgeon (C.M.R.); (4) use
of preoperative 3D virtual surgical plan-
ning and 3D printing of cutting guides.
Subjects were excluded if they did not
have pre-surgical VSP or if the virtual
plan was not utilized in the operating
room. This study was approved by the
Institutional Review Board of the Center
for Applied Clinical Investigation at Bos-
ton Children’s Hospital.

Variables

Study variables included gestational age,
birth weight, sex, syndromic diagnosis,
age at presentation to Boston Children’s
Hospital, age at MDO, dates of preopera-
tive maxillofacial computed tomography
scan (CT), use of intubation for preopera-
tive CT, need for repeat CT due to motion
artifact, dates of pre- and postoperative
polysomnograms (PSGs), dates of VSP
Web session, intraoperative findings,
overall severity score of OSA from the
PSG as scored by the reading sleep medi-
cine physician based on a compilation of
all measured parameters (none = 0, mi-
nor = 1, minor–moderate = 2, moder-
ate = 3, moderate–severe = 4,
severe = 5)21, type of osteotomy used for
MDO, need for additional airway inter-
vention after MDO, and surgical compli-
cations during the follow-up period.

Perioperative management

All patients were managed pre- and post-
operatively in the neonatal intensive care
unit. Prior to MDO, all non-intubated
patients failed non-operative airway man-
agement including positioning maneuvers,
insertion of a nasopharyngeal tube, and/or
use of continuous positive airway pressure
therapy. Direct laryngoscopy and bron-
choscopy were performed prior to MDO
in all non-intubated patients to rule out
laryngomalacia, tracheomalacia, and sub-
glottic stenosis as contributors to airway
obstruction. Non-intubated patients had a
pre-MDO PSG to confirm and character-
ize the OSA and a postoperative PSG at
the end of active distraction prior to the
removal of the activation arms. All PSGs
were performed at the Boston Children’s
Hospital Sleep Center and were read by a
pediatric sleep medicine physician.

Virtual surgical planning

The maxillofacial CT for each patient was
uploaded to a third-party vendor for virtual
surgical planning (3D Systems, Inc., Gold-
en, CO, USA) and a Web session was
scheduled between the surgeon and a bio-
medical engineer using GoToMeeting
(Citrix, Inc., Santa Clara, CA, USA). Prior
to the Web session, the biomedical engi-
neer segmented the CT volumes into rele-
vant anatomical units to highlight
structures such as developing teeth and
the inferior alveolar nerve and to facilitate
virtual surgical movement.
During the Web session, bilateral virtu-

al osteotomies were drawn by the biomed-
ical engineer based on input from the
surgeon. These osteotomy positions and
configurations were customized for each
patient to: (1) minimize or avoid damage
to developing dental structures, (2) avoid
binding of the mobilized distal segment
against the proximal segment during dis-
traction, (3) avoid bringing the coronoid
process forward with the distal segment,
as this could lead to impingement with the
zygomatic arch during distraction, (4) pro-
vide sufficient bone in each segment for
device fixation, (5) achieve the desired
vector for distraction, and (6) match the
distraction vector between sides22. Com-
mon osteotomy designs included linear
oblique, inverted-L, and multi-angular
(Fig. 1). After completion of the virtual
osteotomies, a digital version of the device
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Fig. 2. Simulated distraction to 15 mm.
to be used was applied to each side of the
mandible and distraction of the distal seg-
ment was simulated (Fig. 2).
This author’s preference is for a hori-

zontal distraction vector that is nearly
parallel to the palatal plane23,24. To
achieve this, the distraction devices were
placed with the activation arms extending
posteriorly (Fig. 3), as anterior positioning
requires an oblique or vertical vector to
allow the arm to lie below the inferior
border of the mandible. As a result of the
horizontal device orientation, there was
typically insufficient available bone at
the mandibular angle to allow the osteot-
omy to be positioned posterior to the
lingula while maintaining predictable fix-
ation of the proximal footplate. Therefore,
osteotomies were planned to overlap the
inferior alveolar nerve and the position of
the nerve within the simulated osteotomy
was noted on the planning report for in-
traoperative reference. Alternative device
placement could allow the osteotomy to be
Fig. 3. The activation arm extends posteriorly fr
posterior to the ear lobule.
positioned posterior to the inferior alveo-
lar nerve.
Next, cutting guides were designed. The

guides were configured to capture portions
of the mandibular inferior border and an-
gle to provide stable registration, but with
minimal material to facilitate ease of in-
sertion. Holes were designed to corre-
spond with screw positions. Guide slots
were customized based on osteotomy de-
sign (Fig. 4). For a linear osteotomy, only
the inferior portion was guided to orient
the bone cut, which was then completed
after guide removal. For an inverted-L, the
slot extended to the inflexion point of the
osteotomy. For multi-angular osteo-
tomies, the guide slot demonstrated the
first two angles and a straight edge was
used to orient the third angle to minimize
bulkiness of the guide.
A planning report was generated to

summarize the Web session. The report
included measurements from the buccal
bony cortex to underlying structures
om the distraction device and exits inferior and
(Fig. 1A) and to the lingual cortex to
aid in hole and screw length choice. Cut-
ting guides and a to-scale mandibular
model were then 3D printed (Fig. 5A).
These guides and model were used to
customize the device plates preoperatively
to minimize operating time and ensure an
accurate fit (Fig. 5B). These guides and
modified devices were sterilized for intra-
operative use.

Description of the operation and

distraction protocol

After induction of general anesthesia and
intubation, the head was turned to one
side. A 1-cm incision was created within
a natural skin tension line approximately
2 cm below the mandibular inferior border
after infiltration with 1:100,000 epineph-
rine. Dissection was performed to the
inferior mandibular border while monitor-
ing for the marginal mandibular nerve.
The mandibular angle, ascending ramus,
sigmoid notch, and superior and inferior
mandibular borders were exposed subper-
iosteally. The cutting guide was inserted
and correct fit was confirmed by visual
inspection and tactile sensation. A piezo-
electric saw was used within the slot of the
cutting guide to score the buccal cortex.
One screw hole proximal to and one distal
to the osteotomy were pre-drilled through
the guide. The guide was then removed
(Supplementary Material, Video 1).
The osteotomies were continued

through the lingual cortex superiorly and
inferiorly. The approximate location of the
inferior alveolar nerve was determined
based on the planning report, and the
osteotomy was created only through the
buccal cortex in that area. A tunnel was
created in a superficial plane to the infra-
auricular exit site for the activation arm,
and a rubber catheter was passed back
through this track. The activation arm
was passed within the catheter and con-
nected to the pre-bent distraction device.
The pre-drilled screw holes were used to
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Fig. 4. (A) Examples of cutting guide designs. (B) Guides for linear osteotomies need only
orient the inferior portion of the cut; the remainder can be completed after guide removal. (C)
For inverted-L osteotomies, the guide can extend to the inflexion point of the osteotomy to
ensure that dental structures are avoided as planned. The more horizontal limb of the osteotomy
can be performed free-hand, as the angulation of this cut is less important. (D) For a multi-
angular osteotomy, the guide slot dictates the two inferior angles and a flat edge can be
incorporated to indicate the position and angulation of the superior limb.

Fig. 5. (A) 3D printed cutting guide and mandibular model. (B) Distraction devices that have
been modified preoperatively based on the 3D model and virtual plan.

Fig. 6. Boston Children’s Hospital neonatal distraction protocol for infants with Robin
sequence.
align the device, which was then secured
with four monocortical screws in each foot
plate.
The device was activated and the osteot-

omy was observed for separation. If ten-
sion was encountered, an osteotome was
used to complete the osteotomy through
the lingual cortex. The device was further
activated to ensure tension-free separation
of the segments. The device was then
deactivated until a total distracted distance
of 2 mm remained. The wound was irri-
gated and closed in layers. The operation
was then repeated on the contralateral
side.
After the operation, the patient was

brought intubated to the neonatal intensive
care unit. Distraction commenced at a rate
of 2 mm per day, separated into morning
and evening activations, beginning on the
first postoperative day. Intubation was
maintained for 3–4 postoperative days to
allow airway swelling to resolve. Distrac-
tion was continued until the mandibular
alveolar ridge was 2–4 mm anterior to the
maxillary alveolar ridge, and then a PSG
was obtained to confirm resolution of
OSA. If the OSA had improved but not
resolved, the devices were advanced an
additional several millimeters. After com-
pletion of distraction, the activation arms
were removed at the bedside. Patient dis-
position was then dictated by other needs,
such as feeding assistance. Devices were
removed approximately 8 weeks after in-
sertion (Fig. 6).

Data analysis

Descriptive statistics were computed. A
x2 test was used to evaluate associations
between categorical variables. A P-value
of <0.05 was considered statistically sig-
nificant. Statistical analyses were per-
formed using SAS version 9.4 (SAS
Institute, Inc., Cary, NC, USA).

Results

Sample characteristics

The study sample included 17 patients
(47.1% female). Mean gestational age at
birth was 37.9 � 2.1 weeks, and mean
birth weight was 2.8 � 0.6 kg (range
1.5–3.5 kg). Seven subjects (41.2%) had
a syndromic diagnosis, including Nager
syndrome (n = 3), Stickler syndrome
(n = 2), skeletal dysplasia (n = 1), and an
undefined constellation of multiple anom-
alies (n = 1). One subject (5.9%) had a
tracheostomy at another institution prior to
presentation to Boston Children’s Hospi-
tal that remained in place during MDO,
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Fig. 7. Series of photographs from pre-MDO to the end of active distraction in a boy with Robin sequence who initiated MDO at age 18 days.
‘POD’ indicates the postoperative day at the time of the photograph; the distance distracted is indicated below each image.

Fig. 8. Virtual (A) and actual (B) linear osteotomy.

Fig. 9. Virtual (A) and actual (B) inverted-L osteotomy.
and two patients (11.8%) had tongue–lip
adhesions prior to MDO.
The mean age at MDO was

87 � 96 days (range 18–302 days). The
average mandibular advancement was
17.9 � 1.9 mm (range 13.8–20.0 mm)
(Fig. 7). The distraction devices were
removed an average of 67 � 15.6 days
(range 39–90 days) after placement. The
mean length of postoperative follow-up
was 458 � 267 days (range 26–1011
days).

Virtual surgical planning and osteotomy

design

The maxillofacial CTs used for preopera-
tive virtual planning were obtained at a
mean age of 72 � 94 days and an average
of 15 � 7 days (range 7–33 days) prior to
the operation. Ten patients (58.8%) were
intubated at the time of the CT, with an
endotracheal tube (n = 7), laryngeal mask
airway (n = 2), or tracheostomy (n = 1).
Of these, two were already intubated be-
cause of airway distress and the remaining
eight (47.1%) were intubated solely for the
CT study. For one patient, the CT had to be
repeated with anesthesia and intubation
after a non-intubated scan was non-diag-
nostic due to motion artifact.
The osteotomy was designed as a linear

oblique cut in four cases (23.5%, Fig. 8),
an inverted-L in 11 (64.7%, Fig. 9), and
with multiple angles to avoid developing
dental structures in two (11.8%, Fig. 10).

Intraoperative findings

Cutting guides fit and were used as
planned in all cases. After removal of
the cutting guides, the marked osteotomies
were noted to mimic the virtually planned
osteotomies in shape and position in all
cases (Figs. 8–10).
In all cases, the distraction devices fit as

registered by the pre-drilled holes made
through the cutting guides. It was noted
that planning for the most posterior-infe-
rior hole of the proximal foot plate to
extend off the bone behind the mandibular
angle (Fig. 1) and preoperatively bending
the plate to wrap around the mandible at
that hole using the 3D model (Fig. 5)
facilitated intraoperative device place-
ment and added a tactile cue for confirma-
tion of correct device positioning.
The inferior alveolar nerve was typical-

ly preserved and visualized within the
distraction gap (Fig. 11).
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Fig. 10. (A) Simulated multi-angular osteotomy. (B) The cutting guide is placed and used to
mark the osteotomy angles (two inferior and one superior) and two screw holes (one proximal
and one distal to the osteotomy). (C) Marked osteotomies and indexing screw holes after
removal of the cutting guide. (D) The osteotomies are completed. (E) The distraction device is
applied and activated.
Outcomes

At the time of device removal, sufficient
bone was found within the distraction gap
to support the mandibular position without
the need for additional hardware in all
cases. There were no cases of screw
pull-out or premature detachment of a foot
plate from the bone. In some cases, bone
that had grown over the edges of the foot
plate or screw heads had to be removed to
facilitate device removal.
PSGs were obtained for 13 subjects

(76.5%) pre-MDO at an average age of
59 � 80 days (range 3–254 days) and a
mean of 22 � 15 days (range 6–54 days)
prior to the operation. Of these, 11 sub-
jects (84.6%) had severe OSA, one (7.7%)
had moderate OSA, and one (7.7%) had
mild–moderate OSA.
Postoperative PSGs were available for

15 patients (88.2%) at a mean age of
99 � 111 days (range 27–413 days) and
an average of 22 � 34 days (range 6–141
days) after initiation of distraction. These
found no OSA in 12 patients (80%) and
minor residual OSA in three (20%). Two
of the three patients with minor residual
OSA were syndromic, but the association
between syndromic diagnosis and PSG
outcome was not statistically significant
(P = 0.291). Among patients who had both
pre- and postoperative PSGs (n = 11),
there was a mean improvement in overall
severity score by 4.4 of 5 levels
(P < 0.001).
No patients required additional airway

management, including supplemental ox-
ygen or positioning maneuvers, after
MDO. Patients were discharged to home
at a mean of 21 � 16 days (range 3–72
days) after the initial operation for MDO.
No patients were discharged to other care
facilities. The one patient who had a tra-
cheostomy prior to MDO was successfully
decannulated postoperatively. One patient
required a second MDO procedure during
the follow-up period (2.6 years after the
first MDO) due to recurrent micrognathia
and airway distress, possibly associated
with his diagnosis of Nager syndrome,
and this second procedure was again suc-
cessful in relieving the OSA.
There were four (23.5%) early postop-

erative complications that were all consid-
ered minor because they did not require a
return to the operating room and did not
compromise the airway result. Three
(17.6%) were skin infections in the area
where an activation mechanism emerged.
Of these, two were managed with anti-
biotics and wound care alone; one required
an incision and drainage procedure in the
outpatient clinic. In one patient (5.9%), the
foot plates were noted at the time of device
removal to have separated only two-thirds
of the length of the distracted distance,
which was later found to be due to device
malfunction. This patient nonetheless had
a successful airway outcome.
There were no statistically significant

associations between syndromic presenta-
tion and need for intubation for the CT
(P = 0.906), type of osteotomy chosen
(P = 0.183), change in PSG severity score
(P = 0.378), or occurrence of complica-
tions (P = 0.682). There was no correla-
tion between osteotomy design and
complications (P = 0.145 for infection,
P = 0.178 for device malfunction).

Discussion

Virtual surgical planning was first applied
to mandibular distraction around the turn
of the century25,26. Over the subsequent
decade, VSP technologies and protocols
improved dramatically27–29. In 2014,
Doscher et al. published the first single
case report applying VSP and 3D printing
of cutting guides to a neonate with RS20.
There appears to be only one other case
report of VSP techniques applied to infant
MDO30.
In this series of infants who underwent

MDO with preoperative VSP, all subjects
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Fig. 11. Example of inferior alveolar nerve preserved within the osteotomy after the segments
are distracted several millimeters.
had successful airway outcomes with
complete resolution of OSA in 80% and
minor residual OSA below the threshold
for requiring additional airway interven-
tion in the remainder. The one patient who
had a tracheostomy pre-MDO was suc-
cessfully decannulated postoperatively.
Sufficient bone had formed in the distrac-
tion gaps by the time of device removal at
a mean of 9.5 weeks after placement (ap-
proximately 8 weeks after completing ac-
tive distraction) in all cases. No
postoperative imaging was obtained to
assess generated bone; timing for device
removal was empiric. There were no ma-
jor and four minor early complications
(three wound infections managed with
antibiotics and wound care; one device
malfunction that still led to a successful
airway outcome), and one syndromic RS
patient required a second MDO during the
follow-up period due to recurrent OSA.
The 3D printed cutting guides fit well

and were utilized successfully to guide the
osteotomy and device positioning in all
cases in this series. As a result, all actual
osteotomies mimicked the virtual ones.
Osteotomies were customized to avoid
damage to visualized dental structures
and to achieve the desired vector for dis-
traction. The location of the inferior alve-
olar nerve was also ascertained from the
3D modeling, which, in combination with
meticulous operative technique, facilitat-
ed nerve preservation. The use of cutting
guides and the preoperative bending of
distractor foot plates decreased the need
for wide tissue dissection, allowed fast and
accurate recognition of the correct device
position to achieve the planned distraction
vector, aided in the identification of ade-
quate supporting bone for screw place-
ment, and shortened the operative time.
One potential benefit of VSP is the
avoidance of damage to developing dental
structures. In a series of 85 patients who
underwent MDO in infancy and had a
median follow-up of 7.3 years, Steinberg
et al. found that 47.7% had abnormal
formation of the permanent mandibular
first molar tooth, and the primary mandib-
ular second molar was injured in 13.6%1.
The ability to modify these outcomes by
3D visualization of the developing denti-
tion and customization of osteotomy
designs, however, is unclear. The exami-
nation of skeletal remains of infants has
shown that developing structures of the
permanent mandibular first molar are nev-
er seen at birth and rarely found at age 1.5
months. By 4.5 months, initial cusp for-
mation of these teeth is typically observed,
and by 7.5 months, development of the
crown has been completed. Root forma-
tion is not observed until 3.5 years. For the
deciduous dentition, crown development
of the primary mandibular first molar is
usually complete and initial cusp forma-
tion of the primary mandibular second
molar is seen at birth31. The CT of an
infant, therefore, likely reveals developing
structures of the primary but not the per-
manent dentition. It follows that an osteot-
omy designed to avoid damage to the
visualized dental structures may fail to
preserve the permanent teeth, whose loca-
tion cannot yet be determined. Nonethe-
less, as malformation of the primary molar
can cause eruption disturbance of the suc-
cedaneous premolar, averting damage to
these teeth may be advantageous.
There are some disadvantages to the use

of VSP in this population. First, exposure
to ionizing radiation is necessary to obtain
the CT scan that is fundamental to the VSP
process. Increasing evidence supports an
association between radiation exposure
and cancer risk, and infants are especially
susceptible32,33. While the benefits of VSP
alone may outweigh these risks, appropri-
ate screening for other anomalies that may
be present in a baby with RS provides
additional justification for this exposure.
Postoperative imaging is not routinely
obtained at the author’s center, in order
to minimize cumulative radiation expo-
sure. Some authors have reported promis-
ing results with magnetic resonance
imaging (MRI), which does not utilize
ionizing radiation, for virtual modeling
and planning34,35, and this may become
an alternative to CT in the future. Interest-
ingly, MRI has even proved useful for 3D
modeling of osseous structures for which
this modality has typically been felt to be
inferior to CT36, but these techniques have
not yet been used in craniomaxillofacial
surgery.
Another disadvantage of the VSP pro-

cess is the frequent need for anesthesia and
intubation to obtain the CT imaging. In
this sample, 47% of subjects who did not
otherwise require intubation received an-
esthesia and intubation to ensure a motion-
free CT, and one patient who was initially
not intubated required a second CT with
anesthesia due to motion artifact in the
first image. The process for anesthesia and
intubation, particularly in infants with
tenuous airways, may pose additional risk.
Furthermore, if MRI were to replace CT
for this indication in the future, the need
for anesthesia and intubation would likely
increase due to the longer duration of the
MRI scan.
The use of preoperative planning may

also increase the delay between diagnosis
and operation. In this sample, the mean
time from the CT to operation was 15
days, and the fastest turnaround was 7
days. Improvement in and increasing
availability of 3D planning and printing
techniques may decrease this delay in the
future.
There are several limitations to this

study. First, the retrospective design and
small sample size limit the ability to draw
conclusions from this sample. The mean
follow-up of 1.2 years precludes the eval-
uation of long-term outcomes including
dental development; follow-up for these
patients will continue. Additionally, the
use of PSG to evaluate MDO outcomes is
complicated by the variable expression of
OSA in infants and the significant airway
changes that occur naturally over the first
year of life37,38.
In conclusion, virtual surgical planning

and the fabrication of 3D printed cutting
guides facilitate the precise design and
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execution of mandibular distraction oste-
ogenesis in infants with Robin sequence.
Early airway outcomes are excellent. Fur-
ther study with longer follow-up will be
necessary to determine the influence of
these techniques on long-term outcomes.
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